[R-sig-Geo] retrieving fitted values from geoR model
Ken Nussear
knussear at usgs.gov
Wed Nov 7 01:52:05 CET 2007
I'm trying to obtain the fitted values for a spatial model using
likfit under geoR. When I use the statement
fitted(m4r, spatial = TRUE), per the instructions under help(likfit)
I get the following error
> fitted(m4r, spatial = TRUE)
be patient ... this function currently require calling likfit again
Error in eval(object.call) : object "object.call" not found
If I ask the object for the call I get
> m4r$call
likfit(geodata = spUta, trend = ~TransectLength + all.road +
Urban, ini.cov.pars = c(0.82, 1949), nugget = 0.55, cov.model =
"exponential",
method.lik = "REML")
Can anyone provide help?
Thanks
Ken
The model summary is:
> summary(m4r)
Summary of the parameter estimation
-----------------------------------
Estimation method: restricted maximum likelihood
Parameters of the mean component (trend):
beta0 beta1 beta2 beta3
1.1742 0.0008 -0.3758 -0.0001
Parameters of the spatial component:
correlation function: exponential
(estimated) variance parameter sigmasq (partial sill) = 1.167
(estimated) cor. fct. parameter phi (range parameter) = 1949
anisotropy parameters:
(fixed) anisotropy angle = 0 ( 0 degrees )
(fixed) anisotropy ratio = 1
Parameter of the error component:
(estimated) nugget = 0.2518
Transformation parameter:
(fixed) Box-Cox parameter = 1 (no transformation)
Maximised Likelihood:
log.L n.params AIC BIC
"-75.92" "7" "165.8" "180.3"
non spatial model:
log.L n.params AIC BIC
"-81.95" "5" "173.9" "184.2"
Call:
likfit(geodata = spUta, trend = ~TransectLength + all.road +
Urban, ini.cov.pars = c(0.82, 1949), nugget = 0.55, cov.model =
"exponential",
method.lik = "REML")
More information about the R-sig-Geo
mailing list