[R-sig-Geo] Moran's I vs. spatial rho
Larry Layne
ljlayne at unm.edu
Wed Apr 12 23:09:55 CEST 2006
I am using spdep_0.3-12 to compute Moran's I and spatial rho. To compute
Moran's I, I am using the function 'moran.test' and the row stochastic
definition of the connectivity matrix (the W matrix). Here is the full line
of code for Moran's I:
a <- moran.test(NMmap$att.data$y,y,NMlistw,randomisation=FALSE,
zero.policy=TRUE,alternative="two.sided",rank=FALSE)
I am using the function lagsarlm to compute spatial rho using an
intercept-only model: Y = pWY + XB + e, and using the row stochastic
definition of the connectivity matrix (the W matrix). Here is the full line
of code for this:
x <- lagsarlm(y ~ 1,data=NMpop,NMlistw,type="lag",method="eigen",
quiet=FALSE,zero.policy=TRUE)
I am having difficulty figuring out why the Moran's I estimates are very
different from the spatial rho estimates. Specifically (n is number of
areal units):
Var n Moran's I spatial rho
A 3109 0.365187132203878 0.573153392466612
B 3109 0.360858943229591 0.562977003813789
C 3109 0.140015456674040 0.291046543475327
D 3109 0.613850771465824 0.797930036214143
A 49 0.261942390553635 0.411076873069647
B 49 0.328416006893752 0.526902446982636
C 49 0.341110258614797 0.535113540423957
D 49 0.239118528840316 0.371896460431941
A 4 -0.412023041115369 -1.08397184420832
B 4 -0.577311366437566 -1.21286625541679
C 4 -0.623070319848968 -1.27502649289533
D 4 -0.63499460958309 0.371896460431941
Any ideas why there would be such a discrepancy between Moran's I values
and spatial rho values (especially when n=4) when both are using the same
row stochastic connectivity matrix?
Larry Layne
ljlayne at unm.edu
More information about the R-sig-Geo
mailing list