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Abstract

We present a brief overview of several popular approaches for estimating latent
factor models of security returns, highlighting the similarities and differences of each.
The various methods are recast in a Bayesian estimation framework within the
context of the EM algorithm. The EM algorithm results in a simple, unified
presentation of the various methods in which differences in the implicit underlying
assumptions of each method are readily evident. These differences typically involve
either 1) the assumed distributional form of the common factors or 2) the restrictions
on the form of the variance of the unique factors. In addition, the use of a
Bayesian-EM framework results in a solid theoretical foundation which allows for
many extensions of the standard factor model to be easily incorporated.



Since the Arbitrage Pricing Theory, (APT), was introduced by Ross (1977),
there has been a great deal of interest in estimating multi-factor models of security
returns on the part of academics and practitioners alike. Three of the more popular
approaches to building (linear) multi-factor models include 1) (time series) regressions
of security returns on innovations in economic data series, 2) (cross-sectional)
regressions on industry-standardized fundamental accounting data, as well as 3)
several statistical (latent) factor estimation techniques.! While most practitioners are
familiar with the basic regression methods used in the first two approaches, there is
some apparent confusion, even in academic literature, regarding the different
assumptions, features and requirements of various latent factor estimation methods.?

Recent work in the area of Bayesian factor analysis, Mayekawa (1985), Press
and Shigemasu (1989,1997) and Rowe (2002) which followed the development of the
EM algorithm of Dempster, Laird, and Rubin (1977) and Wu (1983) provide a solid
common theoretical framework for examining the similarities and differences between
these methods. We also bring attention to some apparently lesser-known earlier work
in the area of latent factor modeling, that shed considerable light on these issues. We
review three popular latent factor methods used in the financial literature, which are
sometimes presented as distinct approaches to latent variable estimation. By
formulating the various approaches in a Bayesian-EM framework, we are able to
specify a common algorithm in which the similarities and differences between the

methods become readily apparent.?

LConnor (1995) reviews these three basic methods and examines the relative performance of each
approach.

2While the basic methods used in the first two approaches generally involve ordinary and or
weighted least squares regression to estimate the model parameters, the construction of the inno-
vations in economic data series as well as the selection and transformation of the funadamental data
variables often involve far more complex statistical methods.

3While the use of Bayesian priors apply to all variables in the linear factor models, we focus our
attention solely on the form of the prior for the factor scores.



Section II introduces notation for the basic linear factor model and reviews
some of the standard assumptions. In section III, we briefly review several of the
more popular methods of estimating latent factor models that have appeared in the
financial literature. In section IV we review the EM algorithm of Dempster, Laird,
and Rubin (1977) and its application to factor analysis by Rubin and Thayer (1982).
Section V demonstrates how the EM algorithm can easily be used to develop an
algorithm for a variety of different assumptions regarding the “missing” factors. We
develop a general EM factor analysis algorithm in which the specific form of key
variables in the algorithm can be simply selected from a table entry corresponding to
the specific assumptions implicit in each of the different methodologies. We extend
the EM algorithm for factor analysis of Rubin and Thayer (1982) to the case of a

(stochastic) vague prior for the factor scores.

II The Linear Factor Model

The general form of the linear common factor model is

vij = zibij+e; i=1....n j=1,...,p (1)
where
Yij is the ¢th return observation for security j,
Z; is a (1 x gq) vector of the ith observation of the factor scores,
b; ; is a (¢ x 1) vector of ith period factor loadings, for the jth security, and
€ij is the ith residual error for security j.

Each of the three approaches to building factor models of security returns described

above make different assumptions as to which variables are observed and which must



be estimated as well as placing restrictions on the estimated values. The approach
taken in building a factor model depends on the end objective of the model. Portfolio
managers may be most concerned with identifying a limited number of
macro-economic variables that give them an “edge” in forecasting. A derivatives
trader may be more interested in models that capture changes in forecasted volatility,
estimating a GARCH model for the residual and/or factor variance process. A hedge
fund manager running a long-short market neutral equity portfolio may care little
about the “names” of the factors or changes in volatility as long as he has captured
all common factors and constructed his portfolio with the same amount of factor
exposure on both the long and short positions.

The fundamental variable approach popularized by Barr Rosenberg, treats the
b; ; as being observed data and estimates the factor scores, z; as parameters. In its
simplest form, the economic variable approach treats the factors, z; as being
observed, the factor loadings or betas as parameters to be estimated, and due to the
limited number of degrees of freedom available, usually imposes the restriction that
b;; = b; Vj. Latent factor models must estimate both the factor scores and factor
loadings, again typically with the same restriction that the estimates of the factor
loadings be constant across all observations.* Some methods treat the factor scores as
parameters while others treat the factors as (missing) stochastic variables. In the
simplest case, all three approaches typically assume that the e; ; are i.i.d. normal and
that the appropriate number of factors have been identified such that
cov(ej, ex) = var(e;) if j = k, and equals 0 otherwise.

We focus our attention on the simplest case of regression and latent factor

models since the algorithm for the maximum likelihood estimate (MLE) of the

1The stationarity assumption on the factor loadings in 1) and 3) is not required. For instance, a
linear trend in the factor loadings can be estimated by simply including a dummy variable in which
the factor series are incremented linearly each period.



parameters to the former is the basis of FM algorithms for the later. With the
restriction on b; ; = b;, we can write the model in more compact matrix notation as

follows;?

Y = ZB+ FE (2)
where
Y is an (n X p) array of security returns,

Z is an (n x q) array of factors (scores),
B is a (¢ x p) array of factor loadings (betas), and
E

is an (n X p) array of distubances.

To simplify notation, we assume that the return data, Y, have no missing
observations, and have been de-meaned.® If the observed data are demeaned, then
the factor means, uz, will equal zero. In the case where the factors, Z, are observed,
and given our assumptions on e; ;j, the MLE estimates of the model parameters, B

and residual variances, T?, can be estimated by OLS regression of Y on Z.

B = (Z"2)'Z"Y

° = n'diag(E"E) = n'diag(Y'E)

E = Y-ZB (3)

Equations (3) typically yields maximum likelihood estimates of B and 72 regardless

®We attempt to keep our notation consistent with Rubin and Thayer (1982) with a few minor
extentions.

6Rubin and Thayer (1982) point out that with no missing returns, the MLE estimate of the mean
is the sample mean.



of the distributional form of the factor scores, Z.” We will see in section IV that
equation (3) will form the basis of a general EM algorithm for factor analysis under a

variety of assumptions concerning subsequently “missing” factor scores, Z.

IIT Some Popular Latent Factor Models

We briefly review three popular approaches for estimating factor models that
appear early on in the financial literature. While we recognize that many new
techniques have subsequently been developed (Rowe 2002), these methods continue to
be widely used in modeling security returns.®

Roll and Ross (1980) were the first to use factor analysis in an attempt to test
the assumptions of the APT of Ross (1977). Roll and Ross used the algorithm of
Joreskog, which is often referred to as maximum likelihood factor analysis. This
convention has been the source of some apparent confusion. While the model assumes
the factor scores are multivariate normal stochastic variables, maximum likelihood
estimation can be done for a variety of different distributional forms of Z. We will
distinguish between model assumptions and estimation algorithms, referring to this
model as the traditional normal-linear model, and Joreskog's algorithm as one
approach for obtaining maximum likelihood estimators for this model.

One caveat to note here is that Joreskog‘s algorithm includes another term in
addition to likelihood equation in the objective function of his algorithm, log(det(S)),
where S is defined as the (p x p) sample covariance matrix.? As noted in Rubin and
Thayer (1982), for a given data set, Y, this term is a constant, unaffected by the

parameter estimates. Nonetheless, the inclusion of the term in the objective function

"The main issue when assuming stochastic regressors concerns the independence of the now random
regressors and disturbances.

8Robert Korajczyk maintains an extensive list of papers on estimating APT models and factor
methodology at: www.kellogg.nwu.edu/faculty /korajczy /htm/aptlist.htm

9The term is included for subsequent calculation of a likelihood ratio test.
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requires that the number of observations, n, exceed the number of variables, p. If

n < p, then S will be singular, det(S) will equal zero, and since log(0) = —oo, the
objective function cannot be computed, causing an error message. Apparently as a
result of computer programs generating this error message, many people have
erroneously concluded that maximum likelihood estimates of the normal linear factor
model are not possible when n < p. In fact, the model is perfectly well-defined for the
case of ¢ < n < p.1?

Another feature to note is that Joreskog's algorithm computes the Hessian
matrix of all parameters of the model. While this leads to very rapid convergence
when the number of parameters is small, it quickly becomes computationally
burdensome for very large p, as the computational requirements are of the order p*.
Roll and Ross (1980) note that the maximum number of stocks in any one group were
limited to 30 due to computer resource limitations. While computer power has
increased significantly in the last two decades, this can still be a problem with data
sets requiring an extremely large number of variables.

Brown and Weinstein (1983) examine the “bi-linear” factor model in which the
factor scores are treated as additional parameters of the model in the same sense as
the factor loadings (betas). This method is also known as the least squares method of
factor analysis (LSMFA) and was originally proposed by Young (1942) and Lawley
(1943). The LSMFA is intuitively pleasing in its simplicity and produces directly
observable estimated residuals just as in regression analysis.!! The LSMFA model
parameters can also be easily estimated via a simple conditional maximization (CM)

algorithm. CM results in an iterative algorithm in which the steps alternate between

10This form of the likelihood ratio test, however, is not defined for n < p.

I'Note that in the standard normal-linear model, the differences between the observed and predicted
values involve the sum of two random variables, Z and E. Thus estimates of E by itself are not
possible.



OLS regression of stock returns on the estimated factor scores from the previous
iteration, and WLS regression of returns on the estimated factor loadings from the
previous iteration, where the estimated factor loadings are weighted by the inverse of

the estimated residual variance from the previous iteration.

Z = Yr*B"(Br*B")"!
= (Zz'2)'Z"Y
° = n'diag(E"E) = n'diag(Y'E)

where

Note that (4) is identical to the OLS regressions in (3) with the addition of the
estimation of Z. Brown and Weinstein note that under appropriate assumptions, the
algorithm produces maximum likelihood parameter estimates.

Another widely used technique for constructing factor models is principal
components analysis (PCA). There are three basic variations on PCA of security
returns, 1) PCA of the covariance matrix of returns, 2) PCA of the correlation matrix
of security returns, and 3) principal factor analysis (PFA). PCA of either the
covariance or correlation matrix of security returns, results in a set of eigenvectors
associated with the g-largest eigenvalues of the matrix. Connor and Korajczyk (1986)
point out that PCA can easily be applied to very large data sets by noting that
non-zero eigenvalues of Y7Y are identical to those of YY7. In the first case, the
q-largest eigenvectors of Y'Y are effectively the “portfolio weights”, (p x ¢), which

multiplied by the (n X p) returns matrix, Y (n X p), result in the estimated factor



scores, Z(n x q). In the second case, the g-largest eigenvectors of YY ' (n x q) are
now direct estimates of the factor scores. Once the factor score estimates have been
obtained, the factor loadings, B, are then estimated by OLS regression of returns, Y
on Z.

In PFA, the return series, Y, are first standardized by dividing each security’s
returns by the estimated residual variance from the previous OLS regressions. This
results in an updated estimate of the covariance matrix and resulting eigenvectors.
The process is repeated until convergence is obtained. For security returns, the
number of securities, p, is typically an order of magnitude greater than the number of
available return periods, n. Thus working with the eigenvalues of Y'Y will be
computationally more efficient.*?

Whittle (1952) shows that the LSMFA models are equivalent to PCA /PFA in

the sense that a solution to one approach will also be a solution to the other, up to a

rotation of the factor space.'® The equivalence of the methods are as follows;

PCA Covariance Matrix <= LSMFA with 7} = Tj2 vk, j
PCA Correlation Matrix <= LSMFA with 7 /var(y;) = 77 /var(y;) Vk,j

Principal Factor Analysis <= LSMFA with unique 7']»2

While PCA of the correlation and covariance matrix are one-step estimates both PFA
and LSMFA are iterative procedures. Despite the computational differences in the
two approaches, we can collapse the variations of PCA into the LSMFA and consider

only the later models for simplicity.!* One drawback of these models is that by

12Connor and Korajezyk (198x) estimate principal factor models on data sets in excess of 10,000
variables.

13The estimates of the unique factor variances are unaffected by rotation and will thus be identical
up to the tolerance of the computations.

14While we focus on the LSMFA for reasons of exposition, practical experience suggests that PFA

10



treating the factor scores as parameters of the model, ng degrees of freedom are used
in fitting the factor scores alone versus the (¢? + ¢)/2 used in estimating R for the
normal model.

The key feature of these models is that the factor scores are treated as unknown
but non-stochastic parameters. This becomes a critical issue in obtaining parameter
estimates. Anderson and Rubin (1957) show that for non-stochastic factor models
with unrestricted unique variance estimates, the derivative of the likelihood function
is negative in the neighborhood of zero for some 7]2. This implies that it is not
possible to obtain true maximum likelihood estimates for this class of models because
the global maximum of the likelihood function will always involve a zero estimate of a
unique variance for some variable.’® Any (unrestricted) estimate using all non-zero
unique variance estimates can at best be a local stable point. Anderson and Rubin

thus prove Whittle’s lament that the “LSMFA was too unstable to be useful”.'¢

IV The EM Algorithm

The EM algorithm of Dempster, Laird, and Rubin (1977) (DLR-77) and Wu
(1983) often results in simple iterative algorithms for maximum likelihood parameter
estimates for missing data problems. DLR-77 note that many statistical models can
be recast in the context of the EM algorithm by viewing the problem as one of
“conceptually missing” data, citing factor analysis as one example. The central

feature of the KM algorithm when working with conceptually missing-data problems,

exhibits more stability and converges in fewer iterations.

15In the case where one of the unique variance estimates go to zero, the model effectively treats
that particular variable by itself as one of the factors. While selecting a single variable as a factor
will typically result in higher estimates of unique variance for all the other variables in the data, these
increases in variance are ”overwhelmed” by the one zero variance estimate since the determinant of
the (diagonal) residual variance matrix is simply the product of the individual estimates.

16We would suggest that anyone using either LSMFA or principal factor analysis should include an
explicit check on the lower bound of each unique variance estimate as some computer languages will
continue on even after encountering divide by (nearly) zero conditions.
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is that the algorithm utilizes the often simple-solution to the analogous complete-data
problem with some minor adjustments.

Rubin and Thayer (1982) derive the EM algorithm for factor analysis for the
traditional normal-factor model, noting that the MLE solution to the analogous
complete-data is an OLS regression as in equation (3) above. It is important to note
that the key requirement in the complete-data linear factor model that results in
MLE-OLS regression algorithm, is that e; ; ~ N(O,Tf) Vi, 7. With i.i.d. normal
residuals, the conditional distribution of y; given the factors, Z, and model

parameters, ; = (bj,77), is normal with mean Zb; and variance 77.

(y;12.9) ~ N(Zb;,7}) (5)

Jr 'y

As noted in Rubin and Thayer, the sufficient statistics for the complete-data
MLE estimators are given by Cyz =n"'Z7Z, Cyy =n"'Z7Y, and
Cyy =n'YTY. Note that up to this point, no assumption is required regarding the
distributional form of the factor scores, Z. While the complete-data sufficient
statistics are independent of the distribution of Z, the conditional expectation of the
sufficient statistics, given the observed data, Y, and current estimate of the
parameters, €2 in the E-step of the FM algorithm requires a specific assumption as to
the distribution of Z when the factors are unobserved.!”

Rubin and Thayer derive the conditional expectation of the sufficient statistics

for the case of a multivariate normal prior on Z. In this case Q@ = (B, 72, R) where R

"The parameter space, £ will of course also depend on the specific distributional form for Z.
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is the ¢ x ¢ factor covariance matrix.!'® We expand slightly on their notation defining

Z = E[Z|]Y,Q] =Y},
E[Cz2]Y,Q] = 6 Cyyé+A
= n'ZZ + A,
E[Czy|Y,Q] = 6" Cyy =n"'Z"Y, and

E[Cyy|Y,9] = Cyy =n"'Y'Y. (6)

Under the assumption that Z is multivariate normal, the values of § and A are given

by Gauss’s Theorem:

§ = (+B"RB) " (B'R),
-1
A = R-(RB)(r*+B"RB) (B'R). (7)
Woodbury’s identity simplifies the inversion of the p x p matrix in (7) p x p diagonal
and ¢ X ¢ matrices as
2 T -1 -2 —2 T (p-1 2T\ p_—2
(r*+B"RB) = r2-772B"(R"'+B7r?B") Br?

= 72 —-77?B"(R"'+ F)"'Br?, (8)

where F' = BT-2B”. The EM algorithm for the normal factor model thus involves

the E-step where

6 = 7 *B"R—-r*B7 (R_l + F)_1 FR, which can be further simplified as

18Since Y is assumed to have no missing data and is de-meaned, we can assume that the factor scores
have zero mean and ignore the means of the factors in Q2. If Y has partially missing observations,
however, the convergence rate of the EM algorithm is improved by explicitly including the factor
means in the parameter set. See Liu, Rubin, and Wu, (1998).

13



— T_2BT(R_1 +F)_1,
= R—-—RBJ, and

Z = Y. (9)
The M-step is given as;

= [2"Z+na] ' 2"y,
E - Y-ZB,
* = n'diag(Y'E) = diagi(n '"E"E + B"TAB), and

R = n'Z Z+A. (10)

Note that for the normal-factor model, E represents “pseudo residuals”, in the sense
that they are based on the estimated factor scores, Z. As such, the usual regression
estimate of the residual variance, n~'diag(E" E) must be adjusted by adding the
term BT AB.

V Non-Normal Priors

While the normal factor model is perhaps the most popular method of latent
factor modeling, some authors have expressed concern with regards to the assumption
of a normal prior on the factor scores. Roll and Ross (1980) express concern with
regards to this assumption stating “unknown biases and inconsistencies may be
introduced”. At the opposite end of the spectrum for stochastic factor models is the
case of an uninformed or vague prior on Z.*

Under the asumption of a vague prior on the factor scores, the log likelihood

19See Mayekawa (1985), Press and Shigemasu (1989,1997), and Rowe (2002).
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function can be expressed as;

n

1
LL = —Slogl7?| = 53 (y: — :B)7(y; — =:B)" (11)
=1

Note that E(z;) now explicitly appears in the log likelihood as a parameter and
thus require ng degrees of freedom in estimating Z. While Rubin and Thayer (1982)
developed the EM algorithm for the case of normal factors, FM can be applied to any
prior distribution assumption. As noted above, the general form of the complete-data
sufficient statistics depends only the assumptions regarding the errors, E. Thus given
our earlier assumptions regarding F, and the assumption of a vague prior on Z, the

conditional expectation of the E-step sufficient statistics are given as;

ElCyy|Y,Q] = Cyy=n"'Y'Y

E[Cyz|Y,Q] = Cyyr?BY(Br2B")™!
= Cyyé6=n"'Y"Z

E[Cz|Y,Q] = 6" Cyyé+ (BT ?B")™!

= n'Z"Z+A (12)

Thus the EM algorithm for the vague prior involves the E-step given by

15



and M-step given by

B = (Z"Z+nA)'ZY
? = n'diag(Y"E) = diag(n'E"E + B"AB)

E = Y-ZB (14)

We can also develop the FM algorithm for the LSMFA and equivalently PFA by
assuming a degenerate or point prior for the factor scores. As is typically the case,
the expected value of Z for the degenerate prior is the same as under the vague prior.
The only difference in the EM algorithm under the degenerate prior is that A = 0.
Thus the EM algorithm given in (12) and (13) with A = 0 is equivalent to the
LSMFA estimators in (4).

The standard argument for Bayesian estimation is that if one has prior
information concerning the value of a model variable from other sources than the
current data set, then the information should be included in the final determination
of the estimated parameter value. The problem then, is simply how much weight to
give to the value based on prior information, versus the value indicated by the data
at hand. As the amount of observed data increases, the influence of the data will
overwhelm the influence of the prior, and the Bayesian estimates of the parameter
value will approach that which would be obtained from the data alone.

We present EM algorithms for factor analysis for the cases of both a degenerate
and vague prior regarding the (missing) factor scores. The resulting EM algorithms
are very similar to that of Rubin and Thayer for the normal prior, since the
complete-data algorithm for all cases is OLS regression. The three algorithms differ
only in the value of the hyper parameters, A, a ¢ X ¢ matrix of the uncertainties in

the factor scores given the returns and parameters, and 8, a p X ¢ matrix that is used
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to create the expected factor scores given the data and parameters. The following

table summarizes the differences in The EFM algorithm for the three different priors:

Table I

Prior Distribution on Factor Scores

Hyperparameter Normal Vague | Degenerate
5 2B (R + F)™! 2BTF!
A (R + F)™! F! 0

Table I lists the values of the hyperparameters, § and A, described

in Rubin and Thayer (1982), for each of the three priors.

Note, that as the number of variables, p, increases, the eigenvalues of F' becomes
large while R~ remains approximately constant. Each additional security increases
information about the (missing) factor scores and, hence, the eigenvalues of F', which
leads to lim, ...(R™" + F) = F. Thus as the amount of information regarding the
factor scores increases with p, the construction of the expected value of the factor
scores under the normal, vague, and degenerate priors converge. Likewise, the
estimates of the factor uncertainties under the normal and vague priors also converge.
Furthermore, as F' increases without bound, F~! will approach 0 as in the case of the
degenerate prior. Thus for data sets with a very large number of variables, p, as we
have with security returns, the impact of assuming a normal versus vague prior
distribution on the parameter estimates should be negligible.2°

The above results hold for the case where p — oo. It is of interest to

practitioners to determine approximately how large of value for p is large enough such

20Williams (1978)

17



that the differences in the three models are insignificant. We estimate both 5 and
10-factor models using five years of CRSP historical daily returns for all stocks with
no missing returns over the period 1999-2003.2! This results in a total of 3599 return
series with 1265 return observations per security. Each of the three models are run
until the largest absolute change in the unique variance estimates is less than
.0000000005. 22 Since the EM algorithm is an iterative process, it must be seeded
with initial parameter estimates. In all models the initial values of the unique
variances is set to unity. Due to the strong initial convergence properties of the
EM algorithm, the initial estimates of the factor loadings, B, are simply set to
random values.?3

Table 2-a lists the correlation coefficients between the (biased) maximum
likelihood estimates of the unique variances of each model for the case of five factors.
Note that the coefficients between the degenerate and the two stochastic priors are
equal to six decimal places, while the coefficient between the vague and normal priors
is equal to nine decimal places. Table 2-b lists the coefficient of multiple
determination between each of the factor scores from the degenerate prior model and

the vauge and normal prior models. Tables 3-a and 3-b show the same calculations

for a ten factor model.

21'We restrict the analysis to no missing returns for simplicity. The EM algorithm for each of the
three cases can be extended to account for partially missing returns. See Little and Rubin (1987).

22This is approximately machine precision for the cumulative precision error.

23Glightly fewer iterations are needed to obtain convergence if the initial parameter values are set
to the parameter estimated from an OLS regression on the factor score estimates obtained from PCA
of the returns.
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5-Factor Model

Table 2-a

Correlation between unique variance estimates

Degenerate

Vague

Vague

0.99999976107075

Normal

0.99999974318853

0.99999999966803

Table 2-b

Coefficient of Multiple Determination - R?

Factor Vague Normal
1 0.99809006690431 | 0.99849457278232
2 0.99961970087516 | 0.99995728116171
3 0.99865157451845 | 0.99999371907491
4 0.99984274114329 | 0.99986981939403
5 0.99999897978171 | 0.99755218288660

19




10-Factor Model

Table 3-a

Correlation between unique variance estimates

Degenerate Vague

Vague | 0.99999980150497

Normal | 0.99999978155629 | 0.99999999947440

Table 3-b

20




Coefficient of Multiple Determination - R?
Factor Vague Normal
1 0.99926270577202 | 0.99990167675355
2 0.99994183239856 | 0.99997544665440
3 0.99994341422415 | 0.99961339662613
4 0.99996918134376 | 0.99993522822175
5 0.99991684845893 | 0.99998395035008
6 0.99987331687017 | 0.99999313581024
7 0.99991676872900 | 0.99993933620604
8 0.99991795377910 | 0.99982162001874
9 0.99995708277285 | 0.99994792662562
101 0.99999948799603 | 0.99946202043190
Conclusions:

The EM algorithm for factor analysis clearly defines the differences between
several popular methods for estimating statistical factor models. When cast in a
Bayesian framework, the differences are due to differences in the distributional prior

for the factor scores. As in all cases of Bayesian estimation, the impact of the specific
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prior diminishes as the amount of data increases. For the case of security returns, the
large number of different securities result in virtually no significant economic

differences between the various models.
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