
1 A user’s guide to the subroutine

The syntax of the subroutine call is

@y2qrev(options) yaseries yqseries qseries qresids start end1 end2

# <list of indicators in regression format>

Where

yaseries is the series to interpolate. This should be set up as a quarterly series.

y2q takes the last quarter of each year as the annual value to be interpo-

lated. Reading an annual series from a RATS format file, when the CALENDAR

statement sets up a quarterly periodicity, produces this set–up

yqseries contains the known quarterly values of the yaseries series.

qseries is the interpolated quarterly series. For the period from end1 to end2 the

values in this series should be the same as the corresponding values of yqseries

start end1 is the range to use in interpolation. These should refer to quarters 1

and 4 respectively.

end2 Specifies the end of available quarterly data in yqseries and in the indicators.

The list of indicators may include constant and trend terms. Constant and trend

terms may also be included as options in the procedure call. If they are included in

the list of indicators, they will be used in the calculation of the Principal Compo-

nent which is used to make the interpolating regression ‘homoscedastic’. If they are

specified in the option list they are added to the regression after the ‘heteroscedas-

ticity’ adjustment has been completed. If there is a single indicator do not use the

PC option in conjunction the CONST option. In this case specify a constant in your

indicators and use the NOCONST option (if this is what you require).

The annual series should contain no missing data (#NA) over the interpolation

range (from start to end1. All indicators must contain no #N/A from the first

period of the start year (start) to the final period of the data set (end2). If an

#N/A is found in either series the procedure halts and returns an error message.

If start is not the first quarter of a year or end1 is not the fourth quarter the

procedure also halts and returns an error message.

The options available are as follows:
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[SC] NOSC Adjusts for autocorrelation in the residuals of the indicator model. The

default is a first order AR process.

PC [NOPC] Heteroscedasticity adjustment required using sole indicator or principal

component if more than one indicator. The default is not to adjust.

CONST/[NOCONST] Add or do not add a constant to the regression after the ’ho-

moscedastic’ transformation. Default is not to add constant

TREND/[NOTREND] Add or do not add a trend to the regression after the ’ho-

moscedastic’ transformation. Default is not to add the trend

STARTRHO Initial value for ρ in maximum likelihood estimation. Default is 0.5. If

the estimate does not converge for this value of ρ you may need to try a larger

value. Some initial values may cause the program to exit with a message that

some matrix is not invertible

The procedure includes an amended version of the principal components procedure

distributed with RATS

Example

OPEN DATA xq.rat

CALENDAR 1981 1 4

ALL 2004:04

DATA(FORMAT=RATS) / INTERCEPT X1 X2

OPEN DATA ya.rat

data(format=rats) 1981:1 1997:4 ya

OPEN DATA yq.rat

data(format=rats) 1998:1 2004:04 yq

*print 1981:1 2004:4 intercept x1 x2 ya yq

* quarterly indicators are intercept x1 and x2

*

* annual series to be interpolated is ya and goes from 1981 to 1997

* annual value is repeated in each quarter

*

2



* Known quarterly series is yq

*

source y2qrev.src

@y2qrev ya yq yinterp yresid 1981:1 1997:4 2004:4

# intercept x1 x2

*

* yinterp is the interpolated series

* yresid are the residuale in the interpolation model corresponding

* to the period for which quarterly data are used in the estimation

* of that model.

The first eight statements load the data and indicators. The source statement will

load the subroutine into memory for further use. The statement

@y2qrev ya yq yinterp yresid 1981:1 1997:4 2004:4

# intercept x1 x2

runs the procedure. ya contains the annual data to be distributed to quarters. yq

contains known quarterly data for the series. yresid may be used to examine the

suitability of the model

Exmples of the use of the other options are given in Frain(2004). The output

produced by the program consists of

1. Progress of the maximization process used in estimating the autocorrelation

coefficient. If the system fails to converge this may indicate a possible new

starting value for ρ (The auto-correlation coefficient in the quarterly model).

It may also imply that the indicator model is very bad and that the indicators

are not indicating.

2. Estimates of the parameters of the indicator model
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2 A description of the distribution/interpolation method

Let yyy be a ((4m + k) × 1) vector of the quarterly series. Only annual observations

are available for the first m years of the series. Let XXX be a ((4m+ k)× p) matrix of

related series. Each column of this matrix represents a quarterly data series which

will serve as an indicator for the distribution/interpolation of the annual series. We

assume that there is a multivariate regression type of relationship between yyy and XXX

of the form.

yyy = XβXβXβ + εεε (1)

where

E[εεε] = 0 and E[εε′εε′εε′] = ΩΩΩ

Let CmCmCm be the (m × 4m) matrix
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(2)

Let IkIkIk be the k–dimension Identity Matrix.

CCC be the block-diagonal matrix.

(

CmCmCm,000

000, IkIkIk

)

(3)

Let

yyyd = CyCyCy and XXXd = CXCXCX

Then yyyd ia ((m + k) × 1) vector which contains the m known annual observations

on the national accounts variable stacked on the k known quarterly observations.

XXXa is a corresponding stacked version of the indicator variable matrix.

Let AAA be matrix such that ŷyy = AyAyAyd is a linear unbiased estimator of the quarterly

series. Premultiplying equation (1) by CCC we get
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yyyd = CyCyCy

= CXβCXβCXβ + CεCεCε

= XXXdβββ + εεεd (4)

where

E[εεεd] = 0 and E[εεεdεεεd
′] = CΩCCΩCCΩC ′

Thus

ŷyy − yyy = AyAyAyd − yyy

= AAA(XXXdβββ + εεεd) − (XβXβXβ + εεε)

= (AXAXAXd −XXX)βββ + (AεAεAεd − εεε) (5)

If ŷyy is an unbiased estimator of yyy then E[ŷyy − yyy] = 0. Taking expectations of

equation (5) gives

E[ŷyy − yyy] = (AXAXAXd −XXX)βββ = 0 (6)

This represents (4n + k) equations in the p unknowns. Thus we must have

AXAXAXd −XXX = 0 (7)

The covariance matrix of (ŷyy − yyy) is given by

cov(ŷyy − yyy) = E[(AεAεAεd − εεε)(AεAεAεd − εεε)′]

= E[AεAεAεdεεε
′

dAAA
′ − εεεεεε′dAAA

′ −AεAεAεdεεε
′ + εεεεεε′]

= ACΩCACΩCACΩC ′AAA′ −ΩCΩCΩC ′AAA′ −ACΩACΩACΩ + ΩΩΩ (8)

The diagonal elements of this covariance matrix represent the variance of the cor-

responding element of (ŷyy − yyy). The sum of these elements or the trace of this

covariance matrix is a multiple of the variance of the estimator. Thus the minimum

variance unbiased estimator is that choice of AAA which minimises the trace of this

covariance matrix subject to the constraints given by equation (7). We may write

the Lagrangian for this constrained optimisation problem as—

L =
1

2
trace(ACΩCACΩCACΩC ′AAA′ −ΩCΩCΩC ′AAA′ −ACΩACΩACΩ + ΩΩΩ) − trace(MMM ′(AXAXAXd −XXX)) (9)

where MMM is a ((4m + k) × p) matrix of Lagrange multipliers.
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Differentiating (9) with respect to the elements of A and equating the derivatives

to zero for a minimum we get—

ACΩCACΩCACΩC ′ −ΩCΩCΩC −MXMXMX ′

d = 0 (10)

Thus

A = ΩCA = ΩCA = ΩC ′(CΩCCΩCCΩC ′)−1 + MXMXMX ′

d(CΩCCΩCCΩC ′)−1 (11)

Substitute (11) into (7) to get

ΩCΩCΩC ′(CΩCCΩCCΩC ′)−1XXXd + MMM [XXX ′

d(CΩCCΩCCΩC ′)−1XXXd] −XXX = 0 (12)

Thus

MMM = XXX[XXX ′

d(CΩCCΩCCΩC ′)−1XXXd]
−1 −ΩCΩCΩC ′(CΩCCΩCCΩC ′)−1XXXd[XXX

′

d(CΩCCΩCCΩC ′)−1XXXd]
−1 (13)

Substitute (13) into (11) to get —

AAA = ΩCΩCΩC ′(CΩCCΩCCΩC ′)−1 + XXX[XXX ′

d(CΩCCΩCCΩC ′)−1XXXd]
−1XXX ′

d(CΩCCΩCCΩC ′)−1

−ΩCΩCΩC ′(CΩCCΩCCΩC ′)−1XXXd[XXX
′

d(CΩCCΩCCΩC ′)−1XXXd]
−1XXX ′

d(CΩCCΩCCΩC)−1

= XXX[XXX ′

d(CΩCCΩCCΩC ′)−1XXXd]
−1XXX ′

d(CΩCCΩCCΩC ′)−1

+ ΩCΩCΩC ′(CΩCCΩCCΩC ′)−1[I − [XXX ′

d(CΩCCΩCCΩC ′)−1XXXd]
−1XXX ′

d(CΩCCΩCCΩC)−1]

(14)

The resulting estimator is now

ŷyy = AyAyAyd

= XXXβ̂ββ + ΩCΩCΩC ′(CΩCCΩCCΩC ′)−1ûuud (15)

where

β̂ββ = [XXX ′

d(CΩCCΩCCΩC ′)−1XXXd]
−1XXX ′

d(CΩCCΩCCΩC ′)−1yyyd (16)

is the GLS estimator in the regression of yyyd on XXXd and

ûuud = yyyd −XXX[XXX ′

d(CΩCCΩCCΩC ′)−1XXXa]
−1XXX ′

d(CΩCCΩCCΩC ′)−1yyyd (17)

are the residuals in this regression.

We may summarise the result as follows

1. Estimate the GLS estimates of the coefficients in the annual regression of yyya

on XXXa. The distributed series is the sum of two parts
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2. The first part is found by applying the estimated regression coefficients to the

quarterly indicators

3. The second part is found by distributing the residual in the annual regression

over the quarters. This ensures that the distributed series sum to the known

annual series. Pre-multiplying equation 15 by CCC shows that yyyd = yyy for values

of yyy for which the quarterly data were used.

Extracted from RT/2/2004

The implementation of this procedure involves two practical problems. The first

is the choice of indicators. This must be dealt with on a pragmatic basis for each

series. The second problem is that the covariance matrix ΩΩΩ is, in general, unknown.

Obviously we can not estimate all ((4m + k) × (4m + k)) elements in ΩΩΩ. We must

assume some structure for ΩΩΩ. Four cases are provided in the program. Cases (1) to

(3) below are set out in Chow and Lin (1971). In previous distribution/interpolation

exercises either a test was carried out for the significance of autocorrelation in

regression of the annual variables. If this was not significant case (1) was used. If

significant autocorrelation was found then case (3) was used.

In our practical applications of the methodology the estimated equations produced

very poor out of sample forecasts of the distributed/interpolated variables. The

autocorrelation found in the estimations is likely to be due to miss-specification of

the variable–indicator model. We are also concerned that the the assumption of

homoscedasticity may cause a loading of errors at the start of the sample in the

type of regressions estimated for the model.

Case 4 implements an extension to cater for both autocorrelation and heteroscedas-

ticity. The program estimates the unknown parameters in the model using pseudo

maximum likelihood rather than the iterative procedure suggested by Chow and Lin

(1971). The procedure can be extended to account for various other autocorrelation

structures. A maximum likelihood estimate of the other cases can also be completed

by an appropriate choice of options in running the procedure.
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Case 1 : εεε are uncorrelated variables with constant variance

In this case

ΩCΩCΩC ′(CΩCCΩCCΩC ′)−1 =































































1

4
0 . . . 0

1

4
0 . . . 0

1

4
0 . . . 0

1

4
0 . . . 0

0 1

4
. . . 0

0 1

4
. . . 0

0 1

4
. . . 0

0 1

4
. . . 0

...
...

. . .
...

0 0 . . . 1

4

0 0 . . . 1

4

0 0 . . . 1

4

0 0 . . . 1

4































































βββ is estimated by OLS and the residual is divided equally between the four quarters.
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Case 2 : εεε are uncorrelated variables but are heteroscedastic

In this case

ΩΩΩ =















ω1 0 . . . 0

0 ω2 . . . 0
...

...
. . .

...

0 0 . . . ω4n















and

ΩCΩCΩC ′(CΩCCΩCCΩC ′)−1 =
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In this case βββ is estimated by GLS and the residuals are distributed in proportion

to the variance in the quarter. The variance may be taken as proportional to a

function of the indicator variable(s) or perhaps of the principal component of the

indicator variables.
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Case 3 : Innovations in εεε are homoscedastic but εεε follows an AR(1) process

In this case we assume that the quarterly residuals follow an AR(1) process. In this

case

ΩΩΩ =
σ2

1 − ρ2





















1 ρ ρ2 . . . ρ4n−1

ρ 1 ρ . . . ρ4n−2

ρ2 ρ 1 . . . ρ4n−3

...
...

...
. . .

...

ρ4n−1 ρ4n−2 ρ4n−3 . . . 1





















The covariance of the annual residuals is then given by CΩCCΩCCΩC ′. It can be shown that

the ratio of element (1,2) to element (1,1) in this covariance matrix is given by —

α =
ρ + 2ρ2 + 3ρ3 + 4ρ4 + 3ρ5 + 2ρ6 + ρ7

4 + 6ρ + 4ρ2 + 2ρ3

Taking α as a function of ρ

α(0) = 0

α(1) = 1 and

α(ρ) > 0 for 0 < ρ ≤ 1.

Thus for a particular value of α in the range (0, 1) there corresponds a unique value

of ρ.

When −0.130544 < α] < 0 there are two values of ρ in the range (−0.680297, 0)

for each value of α. For values of α in the range (−1,−0.130554) there is no real

solution to the equation. Thus this methodology is not valid for the distribution of

quarterly data when α is negative. In previous implementations of this procedure

we found no negative values of α

10



Case 4 : Innovations in εεε are heteroscedastic and “pseudo AR(1)” process

This Special Case is a combination of 3.2 and 3.3. We may write

ΩΩΩ = WV WWV WWV W

=
1

1 − ρ2
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. . .
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where ω1, ω2, . . . ,ω4n are the square roots of the variances of the quarterly re-

gressions and ρ is the first order auto-correlation of the quarterly residuals. This

methodology may be implemented using the following steps:

1. Estimate the ω’s using an appropriate function of the indicator variable(s)

(e.g. proportional to a principal component of the indicator variable – this is

the assumption made in the subroutine). This determines WWW up to a factor σ

.

2. If the annual variable yyya is multivariate normal with mean CXβCXβCXβ and variance

CCC ′WWW ′V WCV WCV WC the log of the likelihood is given by

−
N

2
Log(2π) −

1

2
Log(|CCC ′WWW ′V WCV WCV WC|)

−
1

2
(yyyyyyyyya −CXβCXβCXβ)′(XXX ′

a(CCC
′WWW ′V WCV WCV WC)−1XXXa)

−1(yyya −CXβCXβCXβ)

3. For a given value of ρ the maximum of this expression occurs when

β̂ββ = (XXX ′

a(CCC
′WWW ′V WCV WCV WC)−1XXXa)

−1XXX ′

a(CCC
′WWW ′V WCV WCV WC)−1yyya

and

σ̂2 =
1

N
(yyya −CXCXCXβ̂ββ)′(XXX ′

a(CCC
′WWW ′V WCV WCV WC)−1XXXa)

−1(yyya −CXCXCXβ̂ββ)

and the maximum value is

−
N

2
(log(2π) + 1) −

N

2
Log(σ̂2) −

1

2
Log(|C ′CCC ′CCC ′CC|)
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The FIND command in RATS is then used to maximise this expression with

respect to ρ.

4. Use the results at (3) to distribute yyya between quarters using equations 15 to

17 above with ΩΩΩ replaced by W ′V WW ′V WW ′V W

One can verify that this solution satisfies the constraints by premultiplying

(9) by CCC
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