
Practical Portfolio Optimization

K V Fernando

NAG Ltd
Wilkinson House

Jordan Hill
Oxford OX2 8DR
United Kingdom

email: vince@nag.co.uk



i

Abstract

NAG Libraries have many powerful and reliable optimizers which
can be used to solve large portfolio optimization and selection problems
in the financial industry. These versatile routines are also suitable for
academic research and teaching.

Key words
Markowitz, mean-variance analysis, optimal portfolios, minimum

variance portfolio, portfolio selection, portfolio allocation, portfolio
diversification, portfolio optimization, efficient frontier,

mean-variance frontier, MV efficiency



ii

Contents

1 Introduction 1

2 NAG Routines for Optimization 2
2.1 A Selection of Library Routines . . . . . . . . . . . . . . . . . 2
2.2 Quadratic Programming with Linear Constraints . . . . . . . 3
2.3 Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . 3
2.4 Routines for Sparse Matrix Problems . . . . . . . . . . . . . . 3
2.5 Forward and Reverse Communication . . . . . . . . . . . . . 4
2.6 Hardware, Operating Systems and Environments . . . . . . . 4

3 Interfaces to Routines 4
3.1 Portfolio Weights . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Primary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 General Linear Constraints . . . . . . . . . . . . . . . . . . . 5
3.4 Nonlinear Constraints . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Cold and Warm Starts . . . . . . . . . . . . . . . . . . . . . . 6

4 The Optimization Problems 6

5 Processing of Raw Data 7
5.1 The Covariance Matrix in Factored Form . . . . . . . . . . . 7
5.2 Determination of the Singular Values of the Cholesky Factors 9
5.3 If the Covariance Matrix Already Exists . . . . . . . . . . . . 9
5.4 Eigenvalues of the Covariance Matrix . . . . . . . . . . . . . . 10
5.5 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Numerical Examples: Selection of Equities 10

7 Numerical Example: Asset Allocation 15

8 Transactions Costs 15

9 An Example Program 17

10 Acknowledgements 20



1

1 Introduction

The selection of assets or equities is not just a problem of finding attractive
investments. Designing the correct portfolio of assets cannot be done by
human intuition alone and requires modern, powerful and reliable mathe-
matical programs called optimizers. The Numerical Algorithms Group Ltd
(NAG) is world renowned for its work on numerical algorithms, and NAG
routines for optimization are being used extensively in industry, commerce
and academia. Many leading financial companies and institutions employ
NAG optimizers to select, diversify and rebalance their portfolios. They are
also used by business and management schools for teaching and research.

Any investor would like to have the highest return possible from an in-
vestment. However, this has to be counterbalanced by the amount of risk
the investor is able or desires to take. The expected return and the risk mea-
sured by the variance (or the standard deviation, which is the square-root of
the variance) are the two main characteristics of a portfolio. Unfortunately,
equities with high returns usually correlate with high risk.

The behaviour of a portfolio can be quite different from the behaviour of
individual components of the portfolio. The risk of a properly constructed
portfolio from equities in leading markets could be half the sum of the risks of
individual assets in the portfolio. This is due to complex correlation patterns
between individual assets or equities. A good optimizer can exploit the
correlations, the expected returns, the risk (variance) and user constraints
to obtain an optimized portfolio. NAG optimization routines can deliver
optimized and diversified portfolios to match investor expectations.

The mathematical problem of portfolio optimization was initiated by
Professor Harry Markowitz in the fifties and he was rewarded with a Nobel
Prize in Economics in 1990 which he shared with Professors William Sharpe
and Merton Miller [8]. NAG optimizers can handle the classical Markowitz
optimization problems [7], [9], [10] and many modern day extensions [4],
[11], [13], [14], [15]. NAG also provides a consultancy service to the finan-
cial sector to solve mathematical, numerical, programming and visualization
problems associated with portfolio optimization.

Portfolio optimization is often called mean-variance (MV) optimization.
The term mean refers to the mean or the expected return of the investment
and the variance is the measure of the risk associated with the portfolio. The
mathematical problem can be be formulated in many ways but the principal
problems can be summarized as follows.

1. Minimize risk for a specified expected return

2. Maximize the expected return for a specified risk

3. Minimize the risk and maximize the expected return using a specified
risk aversion factor



2

4. Minimize the risk regardless of the expected return

5. Maximize the expected return regardless of the risk

6. Minimize the expected return regardless of the risk

The above problems could have linear or nonlinear constraints, equality and
inequality constraints.

The first three problems are essentially mathematically equivalent and
the solutions are called mean-variance (MV) efficient. The efficient points
in the Return-Risk graph are called the Efficient Frontier.

The fourth problem gives minimum variance solutions which are for cau-
tious investors. It is also used for comparison and benchmarking of other
portfolios. The fifth problem gives the upper bound of the expected return
which can be attained; this is also useful for comparisons. The last problem
indicates a worst case scenario.

When market conditions or the investors risk preferences change, it is
advisable to rebalance the portfolio. Any of the above problems can be
solved relative to an existing portfolio or a benchmark.

The transactions costs associated with purchasing a new portfolio or
rebalancing a portfolio could represent a significant amount to the investor.
NAG optimization routines can handle transactions costs and they could
significantly affect the composition of the portfolio.

2 NAG Routines for Optimization

2.1 A Selection of Library Routines

NAG Libraries devote a complete Chapter to function optimization. Table 1
summarizes the routines available in NAG Libraries.

Routine Constraints Objective Dense or
name function sparse
e04nc linear quadratic dense
e04nf linear quadratic dense
e04nk linear quadratic sparse
e04uc nonlinear nonlinear dense
e04uf nonlinear nonlinear dense
e04ug nonlinear nonlinear sparse

Table 1: Optimization routines



3

2.2 Quadratic Programming with Linear Constraints

The e04nf routine is mainly for Linear Programming (LP) and Quadratic
Programming (QP), and the following objective functions can be minimized.

LP1: ctx. This option can be used for finding the maximum or the minimum
expected return regardless of the variance. The vector c is set to
the expected return vector a. The weight vector of the portfolio is
represented by x.

QP1: 1
2x

tHx. This option can be used to minimize the variance; the matrix
H is set to the covariance matrix V .

QP2: 1
2x

tHx + ctx. This option can be used to minimize the variance for
a specified risk aversion factor; the matrix H is set to the covariance
matrix V and c is set to −λatx where λ is the risk aversion parameter
and a is the expected return vector. Sometimes, the objective function
is defined as 1

2(xtV x−µatx); in that case, the new risk aversion factor
µ is equal to 2λ.

QP3: 1
2x

tHtHx. This is similar to QP1 except that the variance is supplied
via the Cholesky factor H of the covariance matrix V . See Section 5.1
for more details.

QP4: 1
2x

tHtHx+ ctx. This is similar to QP2 except that the covariance is
supplied via the Cholesky factor H of the covariance matrix V .

The routine e04nc can also handle least squares minimization or regression
problems. Many portfolio optimization problems can be formulated as least
squares or regression problems. Hence the same routine e04nc can be used
for solving general portfolio optimization as well as portfolio problems which
are posed as least squares or regression problems.

2.3 Nonlinear Programming

The more general routines e04uc and e04uf can accommodate nonlinear
objective functions with nonlinear constraints.

2.4 Routines for Sparse Matrix Problems

Most of the optimization routines in NAG Libraries are for dense matrix
problems; that is, the constraint matrix is assumed to have mostly non-zero
elements. However, the routines e04nk and e04ug are designed to work with
sparse constraint matrices. The routine e04nk is for linear and quadratic
programming and the routine e04ug is for nonlinear programming. The
routine e04nk does not explicitly require the covariance matrix V but the
user has to supply the matrix-vector product V x.



4

2.5 Forward and Reverse Communication

Most of the optimization routines are based on forward communications.
In such programs, the routine is called only once to obtain the results and
the user supplies all the necessary information to the NAG routine via a
subroutine.

However, in some circumstances, it is necessary to do the optimization
step by step and call the user routine repeatedly to get fresh information.
The NAG routine e04uc is a forward communication routine and e04uf is
the reverse communication equivalent. This reverse communication routine
is particularly useful when it is called from another language (i.e., Microsoft
VBA) which does not fully support procedure arguments in a way that is
compatible with NAG routines.

2.6 Hardware, Operating Systems and Environments

NAG Libraries are available for all popular hardware systems and operating
systems. There are implementations for PCs, workstations, parallel com-
puters such as SGI/Cray T3E and IBM SP3, networks of workstations, and
powerful SMP machines. Various operating systems from Windows (2000,
98, NT), DOS and Linux for PCs to UNIX and VMS for larger systems are
supported.

All of the optimization routines are available as DLLs.

3 Interfaces to Routines

3.1 Portfolio Weights

The weight or the proportion by value of the holding of the asset i is denoted
by xi.

3.2 Primary Data

NAG optimization routines require the following details about the portfolio.

n number of assets in the portfolio

a expected returns of the assets in a vector of length n

s volatilities (standard deviations) of the assets in a vector of length n

C correlation coefficients in an n by n symmetric matrix

li lower limit of the weight of asset i

ui upper limit of the weight of asset i



5

However, instead of the volatility vector s and the correlation matrix C, the
following may be available:

V covariance matrix in an n by n symmetric matrix

Usually, NAG optimization routines require the covariance matrix V , and
if it is not available then it can be easily computed from the standard de-
viation vector s and the correlation matrix C. However, in Section 5.1,
we advocate that the covariance matrix V should not be formed explicitly
to avoid information loss; what is required is the Cholesky factor R of the
covariance matrix V and not the matrix V itself.

3.3 General Linear Constraints

The primary equality constraint is that all the weights should add up to a
constant, usually to unity. That is

n∑
i=1

xi = 1

and the above is known as the budget constraint or the investment con-
straint. In matrix notation

etx = 1

where the column vector x is the weight vector which holds the proportions
of the assets

x = (x1, x2, . . . , xn)t

and e is a column vector with all elements equal to unity.

e = (1, 1, . . . , 1)t.

The expected return vector is denoted by

a = (a1, a2, . . . , an)t

where ai contains the the expected return of the asset or the equity i.
NAG optimizers can handle many equality constraints, and inequality

constraints and they are of the form

l ≤ x ≤ u

L ≤ Ax ≤ U

where l = (l1, . . . , ln)t

u = (u1, . . . , un)t

L = (L1, . . . , Lm)t

U = (U1, . . . , Um)t



6

li and Li are lower limits, ui and Ui represent the upper limits, and m
denotes the number rows of the matrix A. For equality constraints, lower
and upper limits are set to equal values. It is also possible to set the upper
limits to +∞ and the lower limits to −∞

These constraints could represent sector, industry, country, exposure
(momentum, QRQ, P/B) and other user-defined financial constraints.

3.4 Nonlinear Constraints

NAG optimization routines, in particular routines e04uc, e04uf and e04ug,
can handle nonlinear constraints; they also can support nonlinear objective
functions.

3.5 Cold and Warm Starts

Cold starts refer to solutions of the problem from scratch. However, if the
routines are called repeatedly then approximate solutions are available from
previous solutions. In that case, the initial conditions for the next iteration
may be supplied from the previous. Such son-called warm start facilities are
available for many NAG optimization routines.

4 The Optimization Problems

Here we give some of the problems which can be solved using NAG opti-
mizers. However, this list is not comprehensive and many more optimiza-
tion problems can be solved using NAG software. For the mathematically
minded, these problems can be stated as follows.
Problem 1 (Minimize the Risk)

minimize the variance xtV x

with a specified expected return r = atx subjected to linear and (or nonlinear)
constraints.
Problem 2 (Maximize the Expected Return)

maximize the expected return r = atx

with a specified variance ν = xtV x. This is also equivalent to minimization
of −r.

Problem 3 (Maximize Expected Return with Risk Aversion)

maximize λatx− xtV x

subjected to linear and (or nonlinear) constraints where λ is the risk aversion
parameter. This is also equivalent to

minimize xtV x− λatx.



7

Problem 4 (Minimize Risk)

minimize the variance xtV x

subjected to linear and (or nonlinear) constraints.

Problem 5 (Maximize the Expected Return)

maximize the expected return r = atx

subjected to linear and (or nonlinear) constraints. This is also equivalent to

minimize − atx.

Problem 6 (Minimize the Expected Return)

minimize the expected return r = atx

subjected to linear and (or nonlinear) constraints.

The above six problems can be solved with respect to a benchmark or the
existing portfolio. The following is an example and many more variants are
possible.

Problem 7 (Minimize Risk with Respect to a Benchmark)

minimize (x− xb)tV (x− xb)

with a specified expected relative return r defined by

r = at(x− xb)

subjected to linear and (or nonlinear) constraints where xb represents a
benchmark portfolio.

5 Processing of Raw Data

5.1 The Covariance Matrix in Factored Form

Let the element yi,j of the matrix Y denotes the return of the asset j at
time i. If there are m time periods and n assets then the matrix Y is an m
by n matrix. The sample mean for asset j is given by

aj =
1
m

m∑
i=1

yi,j.

Once the sample mean is removed from the returns, we get the deviation
from the sample mean. This deviation Ŷ can be obtained as

Ŷ = Y − eat



8

where e is a column vector of length m with each and every element equal
to unity,

e = (1, . . . , 1)t.

The sample covariance matrix V is usually computed as

V =
1
m
Ŷ tŶ

but some statisticians might prefer the formula

V =
1

m− 1
Ŷ tŶ .

However, it is well known to numerical analysts that such computation of
covariance matrices lead to loss of information; see [1], [5] or [6].

Here is a well known example where information is lost in the formation
of the covariance. Let Ŷ be

Ŷ =




1 1 1
θ

θ
θ




which is full rank provided that θ is non-zero. The covariance matrix is then
given by

Ŷ tŶ =
1
3


 1 + θ2 1 1

1 1 + θ2 1
1 1 1 + θ2


 .

In IEEE machines with double precision floating point arithmetic the ma-
chine precision ε is approximately 2−53. If θ is smaller than

√
ε, then in

floating point arithmetic, the computer will determine the diagonal elements
of Ŷ tŶ as

1 + θ2 −→ 1

due to rounding errors. In that case, the covariance matrix is evaluated as

Ŷ tŶ =
1
3


 1 1 1

1 1 1
1 1 1


 =

1
3
eet

which is a rank-one matrix and hence singular. Thus the explicit formulation
of the covariance matrix should be avoided. One of the ways to avoid such
information loss is to compute the QR factorization of Ŷ , which is defined
by

QR = Ŷ

where the m by n matrix Q contains orthogonal columns (i.e., QtQ = I) and
R is an n by n upper triangular matrix. There are routines in NAG Libraries



9

(e.g., f08ae or f01qc) to compute the QR factorization. The covariance
matrix is then given by

V =
1
m
RtQtQR =

1
m
RtR.

However, the above product does not have to be computed explicitly in
portfolio optimization, and the Cholesky factor R/

√
m can be given as an

input to optimization routines. In this case, the optimization option QP3
or QP4 (see Section 2.2) should be used. Note that it is not necessary to
compute the matrix Q explicitly.

5.2 Determination of the Singular Values of the Cholesky
Factors

To check whether the covariance matrix is positive definite, the singular
values of the Cholesky factor R may be computed. The eigenvalues of the
covariance matrix H are the squares of the singular values of the Cholesky
factors. Thus the eigenvalues of the covariance matrix may be determined
without explicitly forming the covariance matrix.

5.3 If the Covariance Matrix Already Exists

We have already indicated in a previous section that the covariance matrix
should not be formed explicitly. However, if it has been already formed then
it can be given as an input to NAG optimization routines directly using the
options QP1 and QP2 (see Section 2.2 for further details). However, if NAG
optimizations are to be called more than once then it is more efficient to use
QP3 and QP4 options. In that case, the Cholesky factors of the covariance
matrix

V = RtR

should be determined prior to calling the optimization routines. This can
be done using f07fd or f03ae if the covariance matrix is positive definite. If
the factorization does not exist then these routines will indicate the failure
via an appropriate error handling flag.

Covariance matrices are usually positive definite or at least positive semi-
definite. However, due to rounding errors covariance matrices might not be
positive definite, and in that case the the factorization routines might fail
to compute the factors. However, there is no guarantee that the covariance
matrix is positive definite even if the Cholesky factors exist. Consider the
example

H =

(
1 1
1 1

)
=

(
1 0
1 0

)(
1 1
0 0

)
= RtR.

The covariance matrix H has a Cholesky factor R but it is not positive
definite.



10

5.4 Eigenvalues of the Covariance Matrix

We have already indicated that to avoid information loss the covariance ma-
trix should not be formed explicitly. However, if it has been already formed
then the best way to find whether the covariance matrix is positive definite
or not is to compute the eigenvalues of the covariance matrix. If the eigen-
values are positive then the matrix is positive definite. However, even if all
eigenvalues are positive, it is advisable to compute the condition number of
the matrix (which is defined as the largest eigenvalue divided by the small-
est eigenvalue). If the condition number is high then the matrix is nearly
positive semi-definite and this could lead to results which are unreliable.

The eigenvalues may be computed using f02aa but there are also many
other routines that could be used.

5.5 Missing Values

In Section 5.1, a matrix Y was defined, and it contains the data to compute
the covariance matrix and the Cholesky factors of the covariance matrix.
In practice, this matrix may contain missing (unrecorded) data. If this is
the case then a suitable data interpolation routine has to be used to assign
some values to the missing entries. More sophisticated users might find
the missing values using the Brownian bridge EM algorithm [12] which is
an adaptation of the classical EM algorithm [3]) for Brownian processes in
finance.

6 Numerical Examples: Selection of Equities

For illustrative purposes, we give a few examples of the results which could
be expected from NAG optimizers. The data was taken from [2] where
portfolios of shares in the Hang Seng (Hong Kong, 31 shares), DAX 100
(Germany, 85 shares), FTSE 100 (UK, 89 shares), S & P 100 (USA, 98
shares) and the Nikkei (Japan, 225 shares) were studied using NAG e04
routines. Our efficient frontiers are based on the routine e04nf.

The data refers to weekly returns and weekly variance. Figures 1 to 5
give the efficient frontiers for this data. The dominant (red) curve denotes
the frontier if the weights are constrained between zero and unity (no short
sales are allowed). When tighter constraints are forced on the weights (0.0 ≤
xi ≤ 0.1), a different frontier appears. In general, with more constraints,
the expected returns become smaller for a specified risk value. Individual
points denote individual shares; the risk reduction due to optimization can
be judged by comparing these shares with the efficient frontier in these
figures.



11

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.001 0.002 0.003 0.004 0.005

Ex
pe

cte
d 

Re
tu

rn

Risk (variance)

Figure 1: The Efficient Frontiers for the Hang Seng example

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0 0.001 0.002 0.003 0.004 0.005

Ex
pe

cte
d 

Re
tu

rn

Risk (variance)

Figure 2: The Efficient Frontiers for the DAX 100 example



12

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 0.001 0.002 0.003

Ex
pe

cte
d 

Re
tu

rn

Risk (variance)

Figure 3: The Efficient Frontiers for the FTSE 100 example

-0.002

0

0.002

0.004

0.006

0.008

0.01

0 0.001 0.002 0.003 0.004

Ex
pe

cte
d 

Re
tu

rn

Risk (variance)

Figure 4: The Efficient Frontiers for the S & P 100 example



13

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0 0.001 0.002 0.003 0.004 0.005 0.006

Ex
pe

cte
d 

Re
tu

rn

Risk (variance)

Figure 5: The Efficient Frontiers for the Nikkei example

In practical problems, with more financial constraints, the efficient fron-
tier reduces to a smaller curve or almost to a point.

For the Nikkei example, we have also computed the Inefficient Frontier,
which is obtained by using negative values for the risk aversion parameter
λ; see Problem 3 in Section 4. In Figure 6, the top half of the curve (in red)
shows the Efficient Frontier and the bottom part of the curve (in blue) gives
the Inefficient Frontier. No short sales were allowed in this example.

Markowitz-type optimization is frequently used for asset allocation. The
asset manager could have equities, government and corporate bonds, inter-
national equities and bonds, real estate, venture capital and gold to select
the portfolio of assets. Each asset could itself be a portfolio (with or without
optimization).

For our next example, we have used eight types of assets (US 3 month
treasury bills, US government long bonds, SP 500, Wilshire 500, Nasdeq
composite corporate bond index, EAFE and Gold). The yearly returns are
from 1973 to 1994. These could be found at
http://www.sor.princeton.edu/ rvdb/ampl/nlmodels/markowitz/

Figure 7 shows two efficient frontiers. The dominant (red) curve shows
the frontier with upper limits of assets set to unity and the lower limits to
zero. When the lower limit is raised to 0.05 and the upper limit is lowered
to 0.5, we get the efficient frontier shown with a dotted curve (in blue).



14

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0 0.001 0.002 0.003 0.004 0.005 0.006

Ex
pe

cte
d 

Re
tu

rn

Risk (variance)

Figure 6: The Efficient and Inefficient Frontiers for the Nikkei example

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Ex
pe

cte
d 

Re
tu

rn

Risk (variance)

Figure 7: The Efficient Frontiers in asset allocation



15

7 Numerical Example: Asset Allocation

In this numerical example, we started with raw data (yearly returns) and
did not form the covariance matrix explicitly. Instead, as described in Sec-
tion 5.1, only the Cholesky factor R of the covariance was computed. In
this case, the optimization option QP3 or QP4 (see Section 2.2) should be
used since only the Cholesky factor R and not the whole covariance matrix
V has to be given as an input. Figure 7 exhibits the efficient frontier for
this problem.

8 Transactions Costs

In the classical work of Markowitz, transactions costs associated with buying
and selling of equities were not allowed. However, now the importance of
incorporating transactions costs in building new portfolios and also in rebal-
ancing existing portfolios are well recognized. In general, transactions costs
are not trivial enough to be neglected, and the optimal portfolio depends
upon the total cost of transactions.

Let the transactions cost associated with buying the equity i be pi and
then it may be modelled as

pi =

{
(xi − x̄i)gi for xi > x̄i

0 for xi ≤ x̄i

where xi is the new portfolio weight of the equity i, x̄i is the original weight
of the equity i, and gi is a constant associated with buying the equity i.
Similarly, let qi be the cost of selling the equity i,

qi =

{
(x̄i − xi)ii for xi < x̄i

0 for xi ≥ x̄i

where the constant hi is associated with selling. Note that both pi and qi

cannot be simultaneously non-zero since the buying cost is zero when there
is selling and vice versa.

Let φ(x) be the objective function for minimization without transaction
costs. The new objective function with transaction costs is then given by

φ(x) +
n∑

i=1

pi + qi = φ(x) +
n∑

i=1

max{pi, qi}.

The above objective function is not smooth (non-differentiable). However,
this can be transformed into a smooth problem by including a new variable
yi for each equity i. The new objective is then given by

φ(x) +
n∑

i=1

yi



16

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.001 0.002 0.003 0.004 0.005

Ex
pe

cte
d 

Re
tu

rn

Risk (variance)

Figure 8: The Efficient Frontiers with and without Transactions Costs

subjected to the constraints
pi ≤ yi

and
qi ≤ yi

for i = 1, . . . , n, where yi is the transaction cost for equity i. The above two
inequalities can be written in the format

−∞ ≤ gixi − yi ≤ gix̄i

hix̄i ≤ yi + hixi ≤ +∞

Unfortunately, this approach doubles the number of variables for optimiza-
tion.

We have recomputed the efficient frontier for the Hang Seng example by
including transactions costs. We have assumed that pi (which determines
the buying costs) is equal to 0.0001 and qi (which determines the selling
costs) is equal to 0.0002 for each equity i. Furthermore, it was assumed that
the initial portfolio had an equal weighting, xi = 1/38, for each equity i.
Figure 8 shows the efficient frontiers with and without transactions costs.
For a given variance, the difference between the expected returns (for a given
variance) reflects the transactions costs.



17

9 An Example Program

It is fairly easy to use NAG routines to do practical portfolio optimization.
The following example routine shows how to compute the optimal portfolio
when the expected return is minimized (i.e., the problem 1 in Section 1).
This program may be run in conduction with data used in [2]). In addition,
the user has to specify the expected return of the portfolio. The program
outputs the optimal weights and the variance of the portfolio.

/* Example Program for Portfolio Optimization
*
* Copyright 2000 Numerical Algorithms Group Ltd.
*
* This example program computes the optimal weights
* of the equities for a specified expected return
* of the portfolio */

#include <Nag/nag.h>
#include <stdio.h>
#include <Nag/nag_stdlib.h>
#include <Nag/nag_string.h>
#include <Nag/nage04.h>

static void ex1(void);
static void ex1();

#define MAXN 50
#define MAXLIN 2
#define MAXBND MAXN+MAXLIN

main()
{
Vprintf("Portfolio optimization using e04nfc.\n");
ex1();
exit(EXIT_SUCCESS);

}

static void ex1()
{
double x[MAXN], cvec[MAXN], s[MAXN];
double a[MAXLIN][MAXN], h[MAXN][MAXN];
double bl[MAXBND], bu[MAXBND];
double objf,up,low,ret,tem,tex,hh;
Integer tda, tdh;



18

Integer i, j, n, nclin, nbnd, ii, jj;
Boolean print;
Nag_E04_Opt options;
static NagError fail, fail2;

Vscanf(" %*[^\n]"); /* Skip heading in data file */
Vscanf(" %*[^\n]"); /* Skip heading in data file */

fail.print = TRUE;
fail2.print = TRUE;

/* Read the actual problem dimension.
* n = the number of equities. */

Vscanf("%ld",&n);

/* nclin = the number of general linear constraints . */

nclin = 2;
nbnd = n + nclin;
tda = MAXN;
tdh = MAXN;

/* a = the linear constraint matrix A.
* bl = the lower bounds on x and A*x.
* bu = the upper bounds on x and A*x.
* x = the initial estimate of the solution.
* s = the standard deviation of return

For simplicity we assume that
lower bound on x is low
upper bound for x is up
for all x

Read low and up */

Vscanf(" %*[^\n]"); /* Skip heading in data file */
Vscanf("%lf%lf",&low,&up);

/* Set the initial weights to 1/n
set bl and bu
set the second row of A to unity
set the linear constraints bl[n+1] and bu[n+1] */

for (i = 0; i < n; ++i) {
x[i] = 1.0/n;



19

bl[i] = low;
bu[i] = up;
a[1][i] = 1.0;

}
bl[n+1] = 1.0;
bu[n+1] = 1.0;

/* Read the the expected return and sd
The expected return is in first column of A */

Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < n; ++i) {

Vscanf("%lf%lf",&a[0][i],&s[i]);
}

/* Read the correlations
and form the covariance matrix */

Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < n; ++i)

for (j = i; j < n; ++j) {
Vscanf("%ld%ld%lf",&ii,&jj,&hh);
h[ii-1][jj-1] = hh*s[i]*s[j];
h[jj-1][ii-1] = hh*s[i]*s[j];

}

/* Read the required expected return of the portfolio
and set that in bl[n+1] and bu[n+1] */

Vscanf(" %*[^\n]"); /* Skip heading in data file */
Vscanf("%lf",&ret);
bl[n] = ret;
bu[n] = ret;

e04xxc(&options); /* Initialise options structure */

/* Set one option directly
* Bounds >= inf_bound will be treated as plus infinity.
* Bounds <= -inf_bound will be treated as minus infinity. */

options.inf_bound = 1.0e21;

/* Obtain remaining settings */
fail.print = TRUE;



20

print = TRUE;
e04xyc("e04nfc", "stdin", &options, print, "stdout", &fail);

/* Set the problem type and other optional settings*/

options.prob = Nag_QP1;

/* Solve the problem from a cold start. */

if (fail.code == NE_NOERROR)
e04nfc(n, nclin, (double *)a, tda, bl, bu, cvec, (double *)h, tdh,

NULLFN, x, &objf, &options, NAGCOMM_NULL, &fail);

Vprintf("Expected Return = %lf \n",ret);
Vprintf("Expected Variance = %lf \n",2.0*objf);

/* Free memory allocated by e04nfc to pointers in options */
e04xzc(&options, "all", &fail2);

if (fail.code != NE_NOERROR || fail2.code != NE_NOERROR) exit(EXIT_FAILURE);
} /* ex1 */

.

10 Acknowledgements

Discussions with Anne Trefethen, David Sayers, George Levy and Neil Swindells
are gratefully acknowledged.

References

[1] A. Björk. Numerical Methods for Least Squares. SIAM, Philadelphia,
1996.

[2] T. J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha. Heuris-
tics for cardinality constrained portfolio optimization. Computers and
Operations Research, 2000, to appear.

[3] A. P. Dempster, N. M. Laired, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm (with discussion). Jour-
nal of the Royal Statistical Society, Series B (Methodological), 39:1–38,
1977.

[4] E. J. Elton and M. J. Gruber. Modern Portfolio Theory and Investment
Analysis. Wiley, New York, 1995.



21

[5] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, 1996.

[6] C. L. Lawson and R. J. Hanson. Solving Least Squares Problem. SIAM,
Philadelphia, 1995.

[7] H. Markowitz. Portfolio selection. Journal of Finance, 7:77–91, 1952.

[8] H. Markowitz, W. F. Sharpe, and M. Miller. Founders of Modern Fi-
nance: Their Prize Winning Concepts and 1990 Nobel Lectures. AIMR,
Charlottesville VA, 1991.

[9] H. M. Markowitz. Mean-Variance Analysis in Portfolio Choice and
Capital Markets. Blackwell, Oxford, 1987.

[10] H. M. Markowitz. Portfolio Selection: Efficient Diversification of In-
vestments. Blackwell, Oxford, 1991.

[11] R. O. Michaud. Efficient Asset Management. Harvard Business School
Press, Boston, 1998.

[12] W. Morokoff. The Brownian bridge e-m algorithm for covaraince esti-
mation with missing data. Journal of Computational Finance, 2:75–100,
1998.

[13] W. F. Sharpe. Portfolio Theory and Capital Markets. McGraw-Hill,
New York, 1999.

[14] W. F. Sharpe, G. J. Alexander, and J. V. Bailey. Investments. Prentice
Hall, Upper Saddle River, NJ, 1998.

[15] S. A. Zenios. Financial Optimization. Cambridge University Press,
Cambridge, 1993.


