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Abstract

• In this paper we present what we feel is a superior capability for com-
puting the “efficient frontier” (henceforth called the “nondominated
frontier”) of many portfolio selection problems in finance. The com-
puter capability is designated MPQ (for multi-parametric quadratic
programming) and has been programmed in Java.

• MPQ possesses several advantages. One is that MPQ is useful on
large-scale applications (up to at least 2,000 securities in mean-variance
optimization). Another is that MPQ runs in reasonable time with
dense covariance matrices thus obviating the need in many cases to
diagonalize the covariance matrix structure for CPU-time purposes. A
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third is that instead of solving an ε-constraint formulation repetitively
to obtain a dotted or piecewise linear representation of a mean-variance
nondominated frontier, MPQ can solve for the exact nondominated
frontier in usually only a fraction of the time.

• Furthermore, by utilizing a multi-parametric part of MPQ, the com-
puter capability also shows promise for computing the nondominated
surfaces of portfolio problems with additional linear objectives such as
dividends, liquidity, social responsibility, amount invested in R&D, and
so forth.

Keywords: Portfolio selection, efficient frontiers, piecewise parabolic seg-
ments, ε-constraint methods, diagonalizing the covariance matrix structure,
dense covariance matrices, quadratic multiple criteria optimization, paraboloidic
platelets.

1 Introduction

Because of the degree to which the effectiveness of an economy rests upon
its ability to most beneficially allocate its capital, no stone should be left
unturned in trying to better understand the investment process. In this
vein, our attention is drawn to the problem of portfolio selection in that
much of what is “modern portfolio theory” (see Elton, Gruber, Brown and
Goetzmann [8]) is closely linked to the efficient frontiers (but what we will
call “nondominated frontiers”) of such problems.

With portfolio selection a problem at the intersection of finance and op-
erations research (that is, quadratic programming and multiple criteria op-
timization), our purposes in this paper are to

(a) survey the popular software package situation with regard to the com-
putation of the nondominated frontiers of mean-variance portfolio se-
lection problems

(b) introduce a high-speed capability for computing mean-variance non-
dominated frontiers of large-scale problems

(c) show how additional objectives such as dividends, liquidity, social re-
sponsibility, growth in sales, and so forth, can be incorporated into a
theory of multiple objective portfolio selection
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(d) discuss the types of methods necessary for solving portfolio optimiza-
tion problems that also possess additional objectives.

Our motivation with regard to item (a) stems from the current software
situation as represented, for example, by Cplex [6], LINGO [35, 36], Matlab
[29], Mathematica [41], Optimizer by Markowitz and Todd [27], and premium
versions of Solver [40]. These packages presumably cover the tools used
by most portfolio optimization users. However, only Optimizer is able to
compute an exact nondominated frontier1, and only Optimizer is written for
the public domain. Written in VBA (Visual Basic for Applications), this
package’s only drawback is that it is only able to run with a maximum of
248 securities as a consequence of the 256-column limitation of Excel.

The difficulties with the other packages, all of which are commercial, are
several. Of course, each comes with a price tag. This is understood. But for
your money, what is frustrating is that not one of the commercial packages
enables the creation of an executable. This is inhibiting to research as nothing
written on any of the packages can be written for the public domain. This
means that a routine developed on one researcher’s machine cannot in general
be run on another researcher’s machine without another purchased copy of
the software installed on the other machine.

What is also a major disappointment, and this gets at item (b), is the
computer performance of the packages on portfolio problems. Not being able
to compute an exact nondominated frontier, the best they can do is to pro-
duce a dotted or piecewise linear representation of a nondominated frontier.
Requiring repetitive optimizations, the CPU-times required to generate such
representations quickly become onerous on problems with more than about
600-800 securities. About the only way to avoid severe CPU-times on large
problems with the packages is to somehow simplify the covariance matrix
structure, such as by diagonalizing it as in Markowitz and Perold [26]. Since
such covariance matrix simplifications typically involve a loss of informa-
tion, what then results is a dotted or piecewise linear representation of the
nondominated frontier of an approximation of the original problem.

In contrast to the above packages, the computerized capability MPQ of
Hirschberger, Qi and Steuer [13] offers the following advantages. MPQ (i) is
written for the public domain for academic researchers, (ii) is written in Java

1Actually, LINDO, by means of its PARA command, is able to compute an exact
nondominated frontier. However, LINDO is being replaced by LINGO, and the PARA
command is not, as of this writing, included in LINGO.
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for transportability, (iii) does not involve repetitive optimizations and (iv)
can compute, without any necessity to simplify dense covariance matrices,
the exact nondominated frontiers of problems with up to 2,000 securities.
Moreover, the time taken by MPQ to compute an exact nondominated fron-
tier is usually dramatically less than the time required by any of the com-
mercial packages to compute a dotted or piecewise linear representation of a
nondominated frontier.

Our motivation with regard to item (c) stems from the work of Aouni,
Ben Abdelaziz and El-Fayedh [1], Arenas Parra, Bilbao Terol and Rodŕıguez
Uŕıa [2], Bana e Costa and Soares [3], Ehrgott, Klamroth and Schwehm
[7], Guerard and Mark [11], Hallerbach and Spronk [12], Lo, Petrov and
Wierzbicki [20], Ogryczak [32], Zopounidis and Doumpos [42], and others,
involving multi-attribute portfolio selection. Since its inception in the 1950s
by Markowitz [24, 25], portfolio selection has focused almost exclusively on
the first two moments of the single random variable of portfolio return. How-
ever, in many of today’s more complex environments, portfolio managers are
increasingly interested in monitoring other measures such as mentioned in
(c) in the management of their portfolios. In this connection, we show how
multiple objectives are able to enter the general theory of portfolio selection
and how the multiple objectives should then be modeled for solution.

With regard to item (d) the goal is to be able to solve portfolio problems
that possess multiple objectives. This involves understanding the nature of
what is no longer a nondominated “frontier,” but a nondominated “surface.”
Then the potential of MPQ to compute such nondominated surfaces is out-
lined along with strategies for searching a nondominated surface for a most
preferred point on it. Preliminary computational experience is reported for
certain problems with up to 400 securities.

The paper is organized as follows. In Section 2 we provide portfolio
selection theory basics and in Section 3 we discuss the benefits of framing
portfolio selection as a multiple criteria optimization problem. In Section 4
we review the properties of portfolio problems that can be solved for in closed
form. In Section 5 we discuss the computation of nondominated frontiers of
problems that require mathematical programming and report CPU-times.
In Section 6 we show how the theory of mean-variance portfolio selection
can be broadened to include additional objectives. Section 7 discusses future
methods with regard to the solution of multiple objective portfolio selection
problems, and Section 8 consists of concluding remarks.
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2 Portfolio Theory Basics

The well-known problem of portfolio selection is as follows. Assume

(a) n securities

(b) an initial sum to be invested

(c) a beginning of a holding period

(d) an end of the holding period

Let x = (x1, . . . , xn) be termed an investment proportion vector. We also call
x a portfolio as it specifies the proportions of the initial sum to be invested in
the n securities at the beginning of the holding period that are to be held fixed
until the end of the holding period. With expected value µ = (µ1, . . . , µn)
and n× n covariance matrix

Σ =




σ11 σ12 · · · σ1n

σ21 σ22
...

...
σn1 · · · σnn


 ,

let r = (r1, . . . , rn) specify the percent returns of the n securities to be realized
over the holding period. Note that the ri are random variables. Thus for a
given x, portfolio return

R(x, r) =
n∑

i=1

rixi = rTx

that is, the percent return to be earned on the portfolio over the course of the
holding period, is a random variable. The reason to use R(x, r) as notation
for the portfolio return random variable is that both r and x are needed to
define it. Note that the expected value and variance of R(x, r) are given
deterministically by

E[R(x, r)] =
n∑

i=1

µixi = µTx

and

V [R(x, r)] =
n∑

i=1

n∑
j=1

xiσijxj = xTΣx
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Under the assumptions that security prices accurately reflect value and
that the investor’s overall focus2 in portfolio selection is to singularly pursue
the goal of wealth maximization, the problem of portfolio selection is to
maximize the portfolio return random variable as in

max{R(x, r) = rTx} (1)

s.t. x ∈ S

where S is the set of all feasible investment proportion vectors. In general,

S = {x ∈ Rn | Ax ≤ b, 1Tx = 1, αi ≤ xi ≤ ωi} (2)

where the αi and ωi are lower and upper bounds on the xi. However, in
many problems, it is not uncommon for A to be vacuous. As its purpose
is to reflect the investor’s overall focus, we will refer to (1) as the investor’s
stochastic reflection program.

While (1) may look like a linear program, it is not a linear program. The
difficulty with (1) is that the ri are not known until the end of the holding
period, but the xi must be chosen at the beginning of the holding period.
This is why the word “stochastic” has been included in the nomenclature
for (1) – and how to solve a program with stochastic properties requires a
decision. The decision involves how to replace the stochastic program, in this
case the stochastic reflection program, with a deterministic one for solution.
In the spirit of Caballero, Cerdá, Muñoz, Rey and Stancu-Minasian [4] and
Steuer, Qi and Hirschberger [38], an ideal replacement problem is what we
will call an equivalent deterministic implementation problem in the sense that
all solutions that solve the equivalent deterministic implementation problem
are potentially optimal in the stochastic program, and vice versa. We realize
that the names given to the programs are a bit ponderous, but they should
help with clarity as we proceed through the paper.

One of the contributions of Markowitz is his choice of

min {xTΣx} (3)

s.t. µTx = ρ ρ ∈ [a, b]

x ∈ S

2in the same sense that Saaty, for example in [34], uses the concept in his works
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as the equivalent deterministic implementation problem3 for (1) where [a, b]
is the smallest interval by which (3) can generate the nondominated frontier.
For a given ρ ∈ [a, b], xρ solves (3) if random variable R(xρ, r) has the
smallest variance of all portfolio return random variables whose expected
values equal ρ. In (variance, expected-return) space, ((xρ)TΣxρ,µTxρ) is the
nondominated point associated with ρ. Thus the task of (3) is to compute
the set of all nondominated points

{(xTΣx,µTx) ∈ R2 | x solves (3) for some ρ ∈ [a, b]} (4)

Since the graph of (4) is an upward-sloping curve as shown in Figure 1, we
see the penchant for use of the term “frontier.” In the graph, znmv signi-
fies the nondominated point of minimum variance and znmer signifies the
nondominated point of maximum expected return. Thus for the a and b of
(3),

a = znmv
2 and b = znmer

2

where znmv
2 is the second component of znmv ∈ R2 and znmer

2 is the second
component of znmer ∈ R2.

The durability of Markowitz’s designation of (3) as an equivalent deter-
ministic implementation problem is derived from the fact that it has since
been justified under two sets of assumptions. One is that (3) is valid pro-
vided the investor’s utility function is a function of only the single argument
R(x, r) and that the utility function is increasing and quadratic in that ar-
gument. Another is that (3) is valid as long as the vector of security returns
r follows the multinormal distribution. What is remarkable is that the the-
ory of mean-variance portfolio selection that took hold in the 1950s is still
the prevailing theory of portfolio selection today. Part of the reason for its
longevity is that to supplant an entrenched theory, one must come up with a
better theory, and this has not been done. However, the theory of multiple
criteria portfolio selection outlined later in this paper shows that the theory
of present-day mean-variance analysis can at least be expanded to a superset
of itself under many circumstances.

3manytimes one sees this formulation with the ρ-constraint written in inequality form
µT x ≥ ρ
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Figure 1: This is a typical nondominated frontier in (standard-deviation,
expected-return) space. The last part of the portfolio process is to select
a best point on the nondominated frontier and then identify an inverse im-
age in S of the point as an optimal portfolio. Note that while theory and
computation in portfolio selection are generally carried out in terms of vari-
ance, nondominated frontiers are most often shown to users with standard
deviation on the horizontal axis.

3 Multiple Criteria Optimization

We now wish to convey the benefits of treating portfolio selection as a multi-
ple criteria optimization problem (Ehrgott [9] is a recent reference). This is
done because equivalent deterministic implementation problem (3) is recog-
nized as a family of ε-constraint formulations whose purpose is to generate
all nondominated points of the multiple criteria optimization problem

min{xTΣx } (5)

max{µTx}
s.t. x ∈ S

Recall (see Steuer [37], Chap. 8) that in an ε-constraint formulation of
a multiple criteria optimization problem, all but one of the objectives are
converted to constraints with the εi right-hand sides of the constraints set to
target values at the discretion of the user.

Formulation (5), in our opinion, is a more appropriate way to express the
problem of mean-variance portfolio selection because it does not confound
the problem with the method used to solve it – and the ε-constraint method
is not the only way to solve for the set of all nondominated points. For
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instance, the family of weighted-sums problems

max{λ µTx− xTΣx } λ ∈ [0,∞) (6)

s.t. x ∈ S

is also a valid way to solve for all mean-variance nondominated points.
As for terminology, consider the multiple criteria optimization problem

max or min {f1(x) = z1} (7)

...

max or min {fk(x) = zk}
s.t. x ∈ S

in which k is the number of objectives and the zi are criterion values. In
single-criterion optimization there is the usual feasible region S in decision
space Rn. But when k > 1, it is useful to consider feasible region Z = {z ∈
Rk | z = f (x), x ∈ S} in criterion space Rk. In this way, each x ∈ S in
decision space has an image z ∈ Z in criterion space, and each z ∈ Z in
criterion space has at least one inverse image x ∈ S in decision space.

In a multiple criteria optimization problem, a criterion vector z ∈ Z is
either nondominated or dominated. Let J+ = { i | fi(x) is to be maximized}
and J− = {j | fj(x) is to be minimized}. Then we have

Definition 1 Let z̄ ∈ Z. Then z̄ is nondominated in (7) if and only if there
does not exist another z ∈ Z such that (i) zi ≥ z̄i for all i ∈ J+, and zj ≤ z̄j

for all j ∈ J−, and (ii) zi > z̄i or zj < z̄j for at least one i ∈ J+ or j ∈ J−.
Otherwise, z̄ ∈ Z is dominated.

The set of all nondominated criterion vectors is called the nondominated
set. Whereas vectors z ∈ Z in criterion space are either nondominated or
dominated, points x ∈ S in decision space are either efficient or inefficient
as follows.

Definition 2 Let x̄ ∈ S. Then x̄ is efficient in (7) if and only if its image
criterion vector z̄ = (f1(x̄), . . . , fk(x̄)) is nondominated. Otherwise, x̄ is
inefficient.
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The set of all efficient points is called the efficient set. Notice how Definitions
1 and 2 enable us to define nondominance in criterion space and efficiency in
decision space regardless of the number objectives or their min-max status.

A side benefit of using formulation (5) along with Definitions 1 and 2 is
that no longer should ε-constraint formulations such as in (3) induce impre-
cise definitions of the nondominated frontier as seen in Jones

“An efficient portfolio has the highest expected return for a given
level of risk, or the lowest level of risk for a given level of expected
return” [18] p. 526

Mayo [30] p. 163, and other writings. The imprecision of the quote is demon-
strated in Figure 2 in which the nondominated frontier is the curve between
znmv and znmer, inclusive. For each of the horizontal dashed-line levels of ex-
pected return, the portfolios of lowest risk are inefficient, and for each of the
vertical dashed-line levels of risk, the portfolios of highest expected return
are also inefficient, thus contradicting the quote.

z
1

Standard Deviation

E
x
p
e
c
te

d
 R

e
tu

rn

Z

z
nmer

z
nmv

z
2

z
3

Figure 2: A troublesome portfolio-selection feasible region Z for imprecise
definitions of the types of points that comprise the nondominated frontier.

To define optimality in multiple criteria optimization, let V : Z → R
be the decision maker’s k-argument function (where the k arguments are
the criterion values zi) to be maximized over Z. Then, any zo ∈ Z that
maximizes V over Z is an optimal criterion vector, and any inverse image
of zo, that is, any xo ∈ S such that (f1(x

o), . . . , fk(x
o)) = zo, is an optimal

solution. We are interested in the efficient and nondominated sets because if
V is such that more-is-better-than-less for each zi, i ∈ J+, and less-is-better-
than-more for each zj, j ∈ J−, then any optimal criterion vector is a member
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of the nondominated set, and any inverse image of an optimal criterion vector
is a member of the efficient set. Since expected return is in the first category
and variance is in the second, this means that to find an optimal portfolio
one only needs to find a most preferred criterion vector in the nondominated
set, and then take an inverse image. This is precisely Markowitz’s protocol
for identifying an optimal portfolio [24, 25, 27].

4 Computing Nondominated Frontiers I

We now focus on two categories of mean-variance portfolio selection models

min {xTΣx = z1} (8.1)

max {µTx = z2} (8.2)

s.t. x ∈ S (8.3)

as distinctly different methods are pursued to obtain the nondominated fron-
tier.

In the first category is the invertible-covariance-matrix, unrestricted-variable
model. In this model, Σ in (8.1) is invertible and S in (8.3) is given by

{x ∈ Rn | 1Tx = 1} (9)

With no lower or upper bounds on any of the xi, the model is susceptible to
criticism about being unrealistic. Also, it is often hard for Σ to be invert-
ible as all covariance matrices derived from fewer than n observations are
non-invertible. Nevertheless, the model has been of considerable academic
interest in that its efficient and nondominated sets can be solved by formula
as demonstrated in many places such as in Roll [33], Huang and Litzenberger
[16], Ingersoll [17], Luenberger [22], and Campbell, Lo and Mackinlay [5].

Properties of invertible-covariance-matrix, unrestricted-variable models
include the following.

(a) Feasible region Z ⊂ R2 in criterion space is unbounded to the
right (in the direction of increasing variance or standard devia-
tion).

(b) The boundary of Z to the left, called the minimum variance
boundary, is a parabola in (variance, expected-return) space –
and a hyperbola in (standard-deviation, expected-return) space.
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(c) The nondominated frontier is the top half of the parabola, in-
clusive, in (variance, expected-return) space – and the top half
of the hyperbola, inclusive, in (standard-deviation, expected-
return) space

(d) Let x1 and x2 be portfolios whose criterion vectors are on the
minimum variance boundary. Then the criterion vectors of all
linear combinations of x1 and x2 are also on the minimum vari-
ance boundary.

(e) Because of the invertibility of Σ, each point on the nondominated
frontier has one and only one inverse image in S.

To illustrate some of what can be computed by formula, form

T =

[
µTΣ−1µ µTΣ−11
1TΣ−1µ 1TΣ−11

]
≡

[
c d
d f

]

in which 1 ∈ Rn is a vector of ones. This 2 × 2 matrix is formed because
T itself, or elements thereof, are employed in many of the formulas. For
instance,

(a) the expected return of the minimum variance portfolio xnmv is given
by

znmv
2 =

d

f

(b) the variance component zp
1 of a point zp = (zp

1 , z
p
2) on the nondom-

inated frontier whose expected return is fixed to be zp
2 , where zp

2 ≥
znmv
2 , is given by

zp
1 = [zp

2 1]T−1

[
zp
2

1

]

(c) the (efficient) investment proportion vector xp whose image is the
nondominated criterion vector zp is given by

xp = Σ−1 [µ 1]T−1

[
zp
2

1

]
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Since all linear combinations of points in S whose criterion vectors are on the
minimum variance boundary have criterion vectors on the minimum variance
boundary, the set of all efficient points is given by

{x ∈ Rn | x = xnmv + α(xp − xnmv), α ≥ 0}

as long as criterion vector of xp 6= xnmv is some other point on the nondom-
inated frontier (i.e., zp

2 > znmv
2 ). Then the nondominated frontier is given

parametrically by

{(xTΣx,µTx) ∈ R2 | x = xnmv + α(xp − xnmv), α ≥ 0}

5 Computing Nondominated Frontiers II

In the second category of mean-variance models portfolio selection models
are those that require mathematical programming for the computation or
characterization of their nondominated frontiers. A problem is typically in
this category when its feasible region S is more complicated than in (9) such
as when there are lower and upper bounds on the xi as in

S = {x ∈ Rn | 1Tx = 1, αi ≤ xi ≤ ωi} (10)

or when its Σ is non-invertible4. Thus, this is the category of essentially all
realistic, meaningful, practical, and sizable mean-variance problems.

Properties of portfolio selection models in this category include the fol-
lowing.

(a) With S as given in (10), all problems have bounded feasible
regions S and Z.

(b) The minimum variance boundary of Z is piecewise parabolic in
(variance, expected-return) space – and piecewise hyperbolic in
(standard-deviation, expected-return) space.

(c) Points on the nondominated portion of the minimum variance
boundary separating one parabolic (or hyperbolic) segment from
the next are called “turning points.”

(d) When Σ is non-invertible, points on the nondominated frontier
may have multiple inverse images.
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Figure 3: For an n = 25 problem, above we have a 10-point dotted repre-
sentation of the nondominated frontier, its piecewise linear representation of
the nondominated frontier, and the problem’s exact nondominated frontier
(that consists of 16 hyperbolic segments, one of which is hardly discernable).
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There are two approaches for computing the nondominated frontiers of
problems that require mathematical programming. One is the ε-constraint
approach which involves solving (3) repetitively for different values of ρ from
[a, b] to produce a dotted or piecewise linear representation of the nondomi-
nated frontier as in the first two graphs of Figure 3. The other is to obtain
the exact nondominated frontier as in the last graph of Figure 3 by com-
puting all of its parabolic segments using some form of parametric quadratic
programming.

Other than for the invertible-covariance-matrix, unrestricted-variable model,
the ε-constraint approach is the standard approach. For problems requiring
mathematical programming, it is the approach commonly described in text-
books and it is the approach commonly recommended when using any of the
commercial packages such as Cplex, LINGO, Matlab, Mathematica, Solver
and SAS [23]. This is because all of the mentioned packages do not possess
any tools for conducting parametric quadratic programming.

The tasks to be carried out in the ε-constraint approach are as follows.
First, it is necessary to obtain the upper and lower bounds of the inter-
val [a, b]. To compute upper bound b, the expected return of the point of
maximum expected return on the nondominated frontier, we solve the linear
program

max {µTx} (11)

s.t. x ∈ S

With xmax ∈ S the point returned by (11), b = µTxmax.
Lower bound a cannot always be computed with certainty. To compute â,

the expected return of a point of minimum variance on the minimum variance
boundary, we solve the quadratic programming problem

min {xTΣx} (12)

x ∈ S

With xnose ∈ S the point returned by (12), we set â = µTxnose. If the “nose”
of Z is a single point, then a = â = µTxnose and we are okay. Otherwise, if
Z has a flat nose as in Figure 2 with vertical line segment z1 to znmv, then
µTxnose might be less than a. This is because the image of xnose might be
some point other than znmv on the vertical segment, in which case â < a.

4Σ, of course, must be positive semidefinite to be a valid covariance matrix.
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What is frustrating with the packages is that they are not good at indicating
whether or not alternative optima exist. Fortunately, Z’s with flat noses are
rare in practice. It usually takes a contrived example to create a problem
with a flat nose.

An ε-constraint routine that computes [â, b] ⊇ [a, b] and then repetitively
solves (3) for different values of ρ from [â, b] is as in the following seven-step
procedure.

Step 1. Input Σ, µ, α, ω and N .

Here, N is the number of points desired for the construction of a dotted
or piecewise linear representation of the nondominated frontier.

Step 2. Solve linear program (11). Let xmax ∈ S be the point re-
turned by (11). Set b = µTxmax.

Note that if (11) has alternative optima such as illustrated by the hori-
zontal line segment from znmer to z2 in Figure 2, there is no guarantee that
the image of xmax is znmer. This is because its image could be some other
point along the horizontal line segment. Thus, unless we have some definitive
way of ruling out alternative optima, we cannot with confidence utilize the
image of xmax as the topmost point on the nondominated frontier.

Step 3. Solve quadratic program (12). Let xnose ∈ S be the point
returned by (12). Set â = µTxnose, δ = (b − â)/N and let
i = 0.

Note that if Z has a flat nose, the image of xnose may not be nondomi-
nated. Rather than wrestle with the possibility that Z has a flat nose, it is
simplest to let the image of xnose be the bottommost point of the ε-constraint
frontier.

Step 4. Let i = i + 1.

Step 5. Solve ε-constraint program (3) with ρ = b− δ(i− 1).

Note that on the first iteration, (3) solves for the topmost point on the
nondominated frontier. Then, as ρ decreases with the incrementation of i,
the routine produces points going down the minimum variance boundary,
stopping just before the bottommost point computed in Step 3.

Step 6. If i < (N − 1), go to Step 4.

16



Note that this routine involves N + 1 optimizations because two are re-
quired to assure that a correct topmost point is obtained.

Step 7. With the N points generated, display the thus determined
dotted or piecewise linear representation of the nondomi-
nated frontier. Stop.

The other approach for computing the nondominated frontiers of prob-
lems with feasible regions S as in (2) or (9) is to use parametric quadratic
programming. There are three possibilities, and all produce exact nondomi-
nated frontiers. One is to use Markowitz’s critical line algorithm. Introduced
in [25], a recent re-description of the algorithm is available in [27]. However,
it is not easy to master this algorithm, and this may explain why one sees so
few implementations of it as compared to ε-constraint approaches.

A second possibility is to form the Kuhn-Tucker system of linear equa-
tions resulting from (3) and then perform parametric programming on the
equations involving ρ. A third possibility is to form the Kuhn-Tucker system
of linear equations resulting from (6) and then perform parametric program-
ming on the equations involving λ.

After coding the seven-step ε-constraint routine in Matlab, experiments
were conducted to compare CPU-times with MPQ. Results are in Table 1.
The first column of the table specifies problem size in terms of the number of
securities n. For each of the non-italicized entries in the table, the sample size
was 10 problems. Feasible region S in all problems was as in (10) with all αi =
0 and all ωi = 1. In all problems, the Σ covariance matrices were 100% dense
and were randomly generated using the method described in Hirschberger, Qi
and Steuer [15]. To correspond to real covariance matrices, the diagonal and
off-diagonal elements had the same distributional characteristics as possessed
by the real data alluded to in Table 3 of [15]. All experiments were conducted
on a Dell 1.6GHz Centrino laptop with 1GB of RAM.

On the first line of the Table are the results for problems of size n = 200.
Whereas it took Matlab on average 152 seconds to complete the 21 optimiza-
tions required for a 20-point ε-constraint representation of a nondominated
frontier, it took MPQ on average less than 4 seconds to compute an en-
tire exact nondominated frontier. On the second line, with problems of size
n = 400, the numbers are 2,069 seconds and 50 seconds, respectively. What
we are observing is that, on average, MPQ takes less time to compute an
entire exact nondominated frontier than it takes Matlab to compute just a
single point.
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n
ε-constraint

average
CPU-time

standard
deviation

MPQ
average

CPU-time

standard
deviation

200 152.0 6.5 3.7 0.1
400 2,069.3 17.6 50.2 9.6
600 9,027.2 230.4 237.5 53.1
800 24,689.0 - 685.5 131.8

1,000 54,853.0 - 1,108.2 265.1
1,200 2,585.5 886.1
1,400 3,223.5 516.3
1,600 5,478.7 1,046.9
1,800 8,351.8 3,460.8
2,000 17,706.6 5,838.6

Table 1: CPU-time results for the computation of 20-point ε-constraint rep-
resentations of the nondominated frontier versus CPU-time results for the
computation of the exact nondominated frontiers using MPQ. All times are
in seconds.

The numbers on the fourth and fifth lines in the second column are in
italics because they are estimates. They based on two optimizations and
then multiplied by 10. Note that in the case of n = 800, 24,689 seconds is
almost 7 hours, and in the case of n = 1000, 54,853 seconds is over 15 hours.
These figures are to be compared against the roughly 11.5 and 18.5 minutes,
respectively, reported by MPQ.

One might wonder whether the figures in Table 1 can be true. One might
wonder whether MPQ cuts corners. One might wonder whether Matlab, de-
spite its popularity, is a good choice for comparison. For accuracy, MPQ was
tested against Optimizer on problems with up to 248 securities and results
were identical up to about the seventh place to the right of the decimal point
at all turning points. As for the choice of Matlab, we tested MPQ against
Solver and found Solver slower. We also tested MPQ against LINGO. Al-
though LINGO is somewhat faster than Matlab, for us LINGO encountered
difficulties with 100% dense covariance matrix problems over about 600 se-
curities. In fairness to Matlab and LINGO, it is our opinion that they were
basically designed under the assumption that large portfolio problems would
only be brought to computation after having had their covariance matrix
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structures diagonalized. Unfortunately, diagonalizing a covariance matrix
structure is typically accompanied by a loss of information. Actually, CPU-
times on the order of those reported by MPQ might be possible using the
“fast algorithm” outlined in Markowitz, Todd, Xu and Yamane [28] on cer-
tain problems. However, with that algorithm one must start with historical
observations or scenarios, not a covariance matrix. MPQ has no such re-
strictions. Anyway, a coded version of that algorithm is not known to be
anywhere available. Thus with MPQ, we appear to get the best of several
worlds. Not only is it faster than anything avialable, it computes exact
nondominated frontiers (as opposed to the approximations of the packages).
Moreover, it can do so on dense covariance matrix problems that are larger
than anything that can be handled, as demonstrated, by either Matlab or
LINGO.

As seen in Table 1, for the most difficult of mean-variance problems (i.e.,
those with 100% dense covariance matrices), MPQ represents both a “better”
and a “new” capability. For problems up to about 600-800 securities, it is a
better capability as it can typically compute an exact nondominated frontier
in much less time than it takes Matlab to produce an approximation. On
problems over about 800 securities, MPQ represents a new capability for
dense covariance matrix problems as both Matlab and LINGO each run into
their own difficulties while MPQ is still able to operate well within reasonable
time.

6 Multiple Criteria in Portfolio Selection

The mean-variance framework we have been discussing is summarized in
Figure 4. With this figure as a reference point, the endeavor now is to
expand upon the framework with multiple objectives to provide a theory
of portfolio selection to meet the modeling needs of additional groups of
investors for which the assumptions of conventional mean-variance analysis
often fall short.

One such group of investors would consist of those who have the same
overall focus as in the mean-variance theory we have been studying, except
that they do not buy into the assumption that all elements in µ and Σ can
be known with certainty at the beginning of the holding period. Investors
in this group might well wish to monitor their portfolios with other random
variables such as dividends, growth in sales, and amount invested in R&D to
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Figure 4: Hierarchical structure of the overall focus, stochastic reflection of
the overall focus, and equivalent deterministic implementation of the stochas-
tic reflection of conventional (mean-variance) portfolio selection.

hedge against errors that might be made when attempting to wrestle with
information derived from inaccurate µ’s and Σ’s alone. Another group of
investors would consist of those who, in addition to end-of-holding-period
portfolio return, distinctly have other stochastic criteria, perhaps ranging
from liquidity to social responsibility, that they would like to have simulta-
neously maximized.

To articulate the concerns embedded in an investor’s more complex overall
focus, objectives such as from

max{dTx} dividends (13)

max{gTx} growth in sales

max{ aTx} amount invested in R&D

max{ sTx} social responsibility

max{ `Tx} liquidity

where d, g, a, s, ` ∈ Rn are random vectors, can be appended to portfolio
return in the stochastic reflection program. Along with an equivalent de-
terministic implementation of the (multiobjective) stochastic reflection pro-
gram, we have Figure 5.

At the overall focus level in Figure 5, the intent is to build a portfo-
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Figure 5: Hierarchical structure of the overall focus, stochastic reflection of
the overall focus, and equivalent deterministic implementation of the stochas-
tic reflection of multiple objective portfolio selection.

lio that achieves an investor’s optimal trade-off among various factors. The
three vertical dots in the stochastic reflection program indicate the random
variables in addition to portfolio return that are also to be optimized to the
greatest extent possible. In the equivalent deterministic implementation pro-
gram, the vertical dots indicate the deterministic objectives that are utilized
to implement the objectives listed in the multiobjective stochastic reflection
program. While one could see the creation of a pair of expected value and
variance objectives for each stochastic objective, this does not always have
to be the case. As discussed in Caballero et al. [4], other alternatives exist.
One such alternative is to simply implement a stochastic objective in the
form of just its expected value. This could be appropriate with random vari-
ables whose variance is much less or is not as important as others. One could
perhaps argue that most of the stochastic objectives listed in (13) could be
candidates for such treatment.
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7 Future Methods

With the potential of having one or more quadratic and two or more linear
objectives, equivalent deterministic implementation programs can become
difficult. In fact, beyond the theoretical work of Guddat [10], there is little
to nothing in the literature about how to compute the nondominated sets
of such problems. However, in the case of one quadratic and two linear ob-
jectives, progress is being made in Hirschberger, Qi and Steuer [14] and on
this we comment. With an understanding of nondominated sets in the one-
quadratic-one-linear and one-quadratic-two-linear situations, one should be
in a position to perceive the nature of nondominated sets in one-quadratic-
three-or-more-linear situations. While the protocol of first computing the
nondominated set and then selecting from it a most preferred solution re-
mains the same, the mechanics of carrying out these tasks involve a signifi-
cant step up in difficulty.

With three or more objectives, the nondominated set is no longer, in
the parlance of mean-variance optimization, a frontier, but it is now a sur-
face. Consider a one-quadratic-two-linear case. Instead in being piecewise
parabolic in R2, the nondominated set is now platelet-wise paraboloidic in
R3 (like tiles on the front of a space shuttle) as in Figure 6. Fortunately,
with some extra coding, the algorithm programmed into MPQ allows for a
generalization to one quadratic and multiple linear objectives. We are not
aware of any other research, either published or in progress, that can com-
pute the exact nondominated sets of such problems. In computing an exact
nondominated set, what MPQ is able to output includes: (1) the equation of
the paraboloid that each nondominated platelet is a part of, (2) the corner
points (as indicated by z1 to z4 in Figure 6) of each nondominated platelet
in criterion space, and (3) the extreme points (not shown) of the polyhe-
dron subset of efficient points in S that corresponds to each nondominated
platelet. That is, the set of all images of points in an efficient polyhedron
subset constitutes a nondominated platelet on the surface of Z, and the set of
all inverse images of points on a nondominated platelet constitute an efficient
polyhedron subset within or on the surface of S.

Preliminary computational experience with MPQ on computing the non-
dominated sets of portfolio problems with the same characteristics as in Table
1, but with an extra linear objective, are given in Table 2. For example, with
a sample size of 10, problems of size n = 300 had on average almost 2,132
platelets and took on average 23.5 seconds to compute. More extensive re-
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Figure 6: A portrayal of the platelet-wise nature of a nondominated surface
of a one-quadratic-two-linear problem, with the corner points of the shaded
platelet as indicated.

sults will be reported in the future.

n
number

of
platelets

standard
deviation

MPQ
average

CPU-time

standard
deviation

100 1,131.2 414.6 0.8 0.1
200 1,815.0 249.2 4.9 0.7
300 2,131.6 599.9 23.5 7.0
400 2,117.8 637.8 65.9 28.6

Table 2: Results for the computation of all platelets of the nondominated
sets of one-quadratic-two-linear portfolio problems using MPQ. Times are in
seconds.

With regard to the searching of a nondominated set of a problem such as
in Table 2, one strategy is to discretize the nondominated set to some desired
degree of resolution. This can be accomplished platelet by platelet as follows.
For a given platelet, take convex combinations of the extreme points of its
polyhedron subset in S. Because platelet size tends to increase the more
distant a platelet is away from the point in Z that minimizes the quadratic
objective, one would probably want to increase the number of convex combi-
nations the further a platelet is away. Then with perhaps thousands, tens of
thousands, or hundreds of thousands of points, the question is how to iden-
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tify a most preferred one. Four strategies come to mind. One is to employ
multiple probing as in the variant of the Tchebycheff Method described in
Steuer, Silverman and Whisman [39]. Another is to pursue a projected line
search strategy as advanced in Korhonen and Karaivanova [19]. A third is
to utilize a criterion vector component classification scheme as, for instance,
in Miettinen [31]. And a fourth might involve the utilization of some of the
visualization techniques from Lotov, Bushenkov and Kamenev in [21].

8 Conclusions

The capabilities of MPQ provide not only a new capability for mean-variance
portfolio optimization but a new world of possibilities with regard to the
modeling and solution of multiple objective portfolio selection formulations.
As discussed in Section 1, codes for solving for exact nondominated frontiers
are generally not known to be available, either in public domain form or
within the context of popular commercial packages, for problems with more
than 248 securities. Furthermore, as shown in the leftmost two columns of
Table 1, it is basically not possible using software such as Matlab to compute
even approximations of the nondominated frontier in problems with dense
covariance matrices beyond about 800 securities in reasonable time (say 4
hours). However, as shown in the rightmost two columns of Table 1, MPQ can
compute exact nondominated frontiers of dense covariance matrix problems
with up to near 2,000 securities in reasonable time.

In addition, as shown in Table 2, MPQ is able to compute exact nondom-
inated frontiers of tri-criterion dense covariance matrix formulations with up
to at least 400 securities in reasonable time. This opens up a whole new world
of modeling possibilities, and with the importation of methods from multiple
criteria optimization, new areas of portfolio optimization that weren’t even
worth contemplating because of the futility of the solution situation before
can now be brought to the forefront.
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Summary

This paper addresses the problem of portfolio selection in finance. In many
cases, currently available software to compute the efficient frontier runs into
difficulty in problems with more than about 600 securities. To proceed be-
yond this size, it is often necessary to modify the problem in which case
there is typically a loss of information. In this paper, we discuss a computer
capability that can exactly compute mean-variance efficient frontiers of prob-
lems with up to 2,000 securities in very reasonable time (even if a problem’s
covariance matrix is 100% dense).

The paper also discusses an augmentation to the theory of portfolio se-
lection that allows multiple objectives (such as dividends, liquidity, social
responsibility, amount invested in R&D, and so forth) to be incorporated
into the portfolio selection process. In such problems, the efficient set is no
longer a “frontier,” but is now best described as a “surface” with the inter-
esting property that it is composed of platelets (like on the back of a turtle).
Moreover, the computer capability that can extend exact computations of
mean-variance efficient frontiers out to 2,000 securities also has, after addi-
tional coding, the ability to exactly compute all of the platelets of multiple
objective efficient surfaces of problems with up to about 400 securities.
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