[R-SIG-Finance] Select best worst
Pedro páramo
percent||101 @end|ng |rom gm@||@com
Wed Jul 29 15:37:47 CEST 2020
Hi all,
I have differente stocks
AAcciona<- tq_get("ANA.MC",from = '2019-12-31',get = "stock.prices")
ACS<- tq_get("ACS.MC",from = '2019-12-31',get = "stock.prices")
Aena<- tq_get("AENA.MC",from = '2019-12-31',get = "stock.prices")
Amadeus<- tq_get("AMS.MC",from = '2019-12-31',get = "stock.prices")
ArcelorMittal<- tq_get("MTS.MC",from = '2019-12-31',get = "stock.prices")
BBVA<- tq_get("BBVA.MC",from = '2019-12-31',get = "stock.prices")
Sabadell<- tq_get("SAB.MC",from = '2019-12-31',get = "stock.prices")
Santander<- tq_get("SAN.MC",from = '2019-12-31',get = "stock.prices")
Bankinter<- tq_get("BKT.MC",from = '2019-12-31',get = "stock.prices")
Indra<- tq_get("IDR.MC",from = '2019-12-31',get = "stock.prices")
And I have applied this code to know the year to date accumulated returns,
the thing is that I want to order them by the last observation (year to
date) and make a plot of the 3 best/worst (bigger/lower
accumulated returns).
¿Is there a way to compare and order the last observation of
STOCKcum_return of each stock and select the 3 top and 3 bottom so I can
plot like worst/best without going manually?
Many thanks in advance
Hope I can explain
Indra_daily_returns <- Indra %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
Indra_cum_returns <- Indra_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
AAcciona_daily_returns <- AAcciona %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
AAcciona_cum_returns <- AAcciona_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
ACS_daily_returns <- ACS %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
ACS_cum_returns <- ACS_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
AENA_daily_returns <- AENA %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
Aena_cum_returns <- Aaena_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
Amadeus_daily_returns <- Amadeus %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
Amadeus_cum_returns <- Amadeus_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
ArcerlorMittal_daily_returns <- ArcerlorMittal %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
ArcerlorMittal_cum_returns <- ArcerlorMittal_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
BBVA_daily_returns <- BBVA %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
BBVA_cum_returns <- BBVA_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
Sabadell_daily_returns <- Sabadell %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
Sabadell_cum_returns <- Sabadell_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
Santander_daily_returns <- Santander %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
Santander_cum_returns <- Santander_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
Bankinter_daily_returns <- Bankinter %>%
tq_transmute(select = adjusted, # this specifies which column
to select
mutate_fun = periodReturn, # This specifies what to do
with that column
period = "daily", # This argument calculates Daily
returns
col_rename = "idr_returns") # renames the column
Bankinter_cum_returns <- Bankinter_daily_returns %>%
mutate(cr = cumprod(1 + idr_returns)) %>% # using the cumprod
function
mutate(cumulative_returns = cr - 1)
[[alternative HTML version deleted]]
More information about the R-SIG-Finance
mailing list