[R-SIG-Finance] Option valuation for arbitrary distribution using monte carlo simulation

msalese massimo.salese at gmail.com
Wed Nov 23 17:00:47 CET 2011


You can tray to use non normal innovations (sampled from stable
distribution),
but you have to estimate alpha, beta, gamma and delta parameters

innovation.stable<-function(pTrials=5000,pAlpha=1.7,pBeta=0.5,pGamma=1,pDelta=1,pPm=0){
  #you must estimate parameters from past data using stableFit
  #alpha -> index tail (0,2]
  #beta -> skewness [-1,1]
  #gamma -> scale 
  #delta -> shift
  #pm -< parametrizzation (0,1,2)
  require(package='fBasics',quietly=FALSE)
  z <-
rstable(n=pTrials,alpha=pAlpha,beta=pBeta,gamma=pGamma,delta=pDelta,pm=pPm)
  #genereta anthitetic innovation
  ant.z <--z
  #combine in the new one:
  z <- c(z,ant.z)
  #return innovation vector
  return(z)
}
##############################à
Iacus' Book starts teaching you to price with normal innovations and then
improves the code and teachs you how to parallelize all.



--
View this message in context: http://r.789695.n4.nabble.com/Option-valuation-for-arbitrary-distribution-using-monte-carlo-simulation-tp4095718p4100184.html
Sent from the Rmetrics mailing list archive at Nabble.com.



More information about the R-SIG-Finance mailing list