[R-SIG-Finance] Option valuation for arbitrary distribution using monte carlo simulation
msalese
massimo.salese at gmail.com
Wed Nov 23 17:00:47 CET 2011
You can tray to use non normal innovations (sampled from stable
distribution),
but you have to estimate alpha, beta, gamma and delta parameters
innovation.stable<-function(pTrials=5000,pAlpha=1.7,pBeta=0.5,pGamma=1,pDelta=1,pPm=0){
#you must estimate parameters from past data using stableFit
#alpha -> index tail (0,2]
#beta -> skewness [-1,1]
#gamma -> scale
#delta -> shift
#pm -< parametrizzation (0,1,2)
require(package='fBasics',quietly=FALSE)
z <-
rstable(n=pTrials,alpha=pAlpha,beta=pBeta,gamma=pGamma,delta=pDelta,pm=pPm)
#genereta anthitetic innovation
ant.z <--z
#combine in the new one:
z <- c(z,ant.z)
#return innovation vector
return(z)
}
##############################à
Iacus' Book starts teaching you to price with normal innovations and then
improves the code and teachs you how to parallelize all.
--
View this message in context: http://r.789695.n4.nabble.com/Option-valuation-for-arbitrary-distribution-using-monte-carlo-simulation-tp4095718p4100184.html
Sent from the Rmetrics mailing list archive at Nabble.com.
More information about the R-SIG-Finance
mailing list