[R-SIG-Finance] what's wrong with diff.zoo

mat matthieu.stigler at gmail.com
Sun Mar 7 14:43:46 CET 2010


Thanks Gabor for your fast answer! And thanks for "reducing" the data 
file, true it is much easier to read!

I think the problem must be specific to this data. I had created it from 
a .csv file, putting ts attributes with ts(), converting to zoo and then 
finally dput(). So maybe through this complicated and indirect process 
something went wrong?

I'm using your second workaround, which solves the problem!

Thanks again!

Gabor Grothendieck a écrit :
> Its best to cut down your data as much as possible when posting.
> Using the first 10 rows of PPP seems sufficient to illustrate this:
>
>   
>> P <- head(PPP, 10)
>> diff(P)
>>     
>            PriceIT    PriceUS    ExRateUSIT
> 1973(4)  0.2000008 0.29999924 -6.330707e-05
> 1973(7)  0.1000004 0.09999847  4.078149e-05
> 1973(10) 0.2000008 0.39999771 -3.498323e-06
>
> Here is the dput output for just those 10 rows in case there are follow ups:
>
> P <- structure(c(19.60000038147, 19.70000076294, 20, 20.20000076294,
> 20.5, 20.60000038147, 20.70000076294, 20.70000076294, 21, 21.20000076294,
> 42.5999984741, 42.9000015259, 43.2999992371, 43.5999984741, 43.9000015259,
> 44.2000007629, 44.2999992371, 45.0999984741, 45.2000007629, 45.5999984741,
> 0.00170791273132914, 0.00174209951913706, 0.00176040845258218,
> 0.00169710137902025, 0.00169609381850337, 0.0016792046735684,
> 0.00171998616788486, 0.00174231201103162, 0.0017690973759385,
> 0.00176559905254172), .Dim = c(10L, 3L), .Dimnames = list(NULL,
>     c("PriceIT", "PriceUS", "ExRateUSIT")), index = c(1973, 1973.08333333333,
> 1973.16666666667, 1973.25, 1973.33333333333, 1973.41666666667,
> 1973.5, 1973.58333333333, 1973.66666666667, 1973.75), class = c("zooreg",
> "zoo"), frequency = 12)
>
> The problem appears to be small differences between P and lag(P, -1).
> Note sure if this is a problem with this specific object (how was it
> created?) or if its a general problem.  We can see the problem by
> merging P with lag(P, -1) :
>
>   
>> merge(P, lag(P, -1))
>>     
>                    PriceIT.P PriceUS.P ExRateUSIT.P PriceIT.lag(P, -1)
> PriceUS.lag(P, -1) ExRateUSIT.lag(P, -1)
> 1973(1)                 19.6      42.6  0.001707913                 NA
>                 NA                    NA
> 1973(26178848280)       19.7      42.9  0.001742100                 NA
>                 NA                    NA
> 1973(26178848281)         NA        NA           NA               19.6
>               42.6           0.001707913
> 1973(52357696562)         NA        NA           NA               19.7
>               42.9           0.001742100
> 1973(52357696563)       20.0      43.3  0.001760408                 NA
>                 NA                    NA
> 1973(78536544842)       20.2      43.6  0.001697101               20.0
>               43.3           0.001760408
> 1973(104715393122)      20.5      43.9  0.001696094                 NA
>                 NA                    NA
> 1973(104715393123)        NA        NA           NA               20.2
>               43.6           0.001697101
> 1973(130894241403)        NA        NA           NA               20.5
>               43.9           0.001696094
> 1973(130894241404)      20.6      44.2  0.001679205                 NA
>                 NA                    NA
> 1973(157073089683)      20.7      44.3  0.001719986               20.6
>               44.2           0.001679205
> 1973(183251937963)      20.7      45.1  0.001742312                 NA
>                 NA                    NA
> 1973(183251937964)        NA        NA           NA               20.7
>               44.3           0.001719986
> 1973(209430786244)        NA        NA           NA               20.7
>               45.1           0.001742312
> 1973(209430786245)      21.0      45.2  0.001769097                 NA
>                 NA                    NA
> 1973(235609634525)      21.2      45.6  0.001765599               21.0
>               45.2           0.001769097
> 1973(261788482805)        NA        NA           NA               21.2
>               45.6           0.001765599
>
> Will look at the problem but in the meantime here are three workarounds:
>
>   
>> # 1. fix up the time scale as it seems slightly off a 12 point cycle
>> P0 <- aggregate(P, round(12 * time(P))/12, identity)
>> diff(P0)
>>     
>            PriceIT    PriceUS    ExRateUSIT
> 1973(2)  0.1000004 0.30000305  3.418679e-05
> 1973(3)  0.2999992 0.39999771  1.830893e-05
> 1973(4)  0.2000008 0.29999924 -6.330707e-05
> 1973(5)  0.2999992 0.30000305 -1.007561e-06
> 1973(6)  0.1000004 0.29999924 -1.688914e-05
> 1973(7)  0.1000004 0.09999847  4.078149e-05
> 1973(8)  0.0000000 0.79999924  2.232584e-05
> 1973(9)  0.2999992 0.10000229  2.678536e-05
> 1973(10) 0.2000008 0.39999771 -3.498323e-06
>
>   
>> # 2. use zoo instead of zooreg
>> diff(as.zoo(P))
>>     
>             PriceIT    PriceUS    ExRateUSIT
> 1973.0833 0.1000004 0.30000305  3.418679e-05
> 1973.1667 0.2999992 0.39999771  1.830893e-05
> 1973.25   0.2000008 0.29999924 -6.330707e-05
> 1973.3333 0.2999992 0.30000305 -1.007561e-06
> 1973.4167 0.1000004 0.29999924 -1.688914e-05
> 1973.5    0.1000004 0.09999847  4.078149e-05
> 1973.5833 0.0000000 0.79999924  2.232584e-05
> 1973.6667 0.2999992 0.10000229  2.678536e-05
> 1973.75   0.2000008 0.39999771 -3.498323e-06
>
>   
>> # 3. assuming this is monthly data use yearmon class
>> Pym <- aggregate(P, as.yearmon, identity)
>> diff(Pym)
>>     
>            PriceIT    PriceUS    ExRateUSIT
> Feb 1973 0.1000004 0.30000305  3.418679e-05
> Mar 1973 0.2999992 0.39999771  1.830893e-05
> Apr 1973 0.2000008 0.29999924 -6.330707e-05
> May 1973 0.2999992 0.30000305 -1.007561e-06
> Jun 1973 0.1000004 0.29999924 -1.688914e-05
> Jul 1973 0.1000004 0.09999847  4.078149e-05
> Aug 1973 0.0000000 0.79999924  2.232584e-05
> Sep 1973 0.2999992 0.10000229  2.678536e-05
> Oct 1973 0.2000008 0.39999771 -3.498323e-06
>
>
> On Sun, Mar 7, 2010 at 7:46 AM, mat <matthieu.stigler at gmail.com> wrote:
>   
>> Hi all
>>
>> I have a strange output using diff.zoo, where diff reduces the dim object by
>> more than 1:
>>
>> See:
>>     
>
>
>
>
>   
>>> class(PPP)
>>>       
>> [1] "zooreg" "zoo"  > frequency(PPP)
>> [1] 12
>>     
>>> dim(PPP)
>>>       
>> [1] 202   3
>>     
>>> dim(diff(PPP))
>>>       
>> [1] 67  3
>>
>> #What is happening? Dim is not 201 3 as I would expect, like I get with ts:
>>     
>>> dim(diff(as.ts(PPP)))
>>>       
>> [1] 201   3
>>
>> #Differentiation seems to be done only for selected months...
>>     
>>> head(PPP)
>>>       
>>         PriceIT   PriceUS ExRateUSIT
>> 1973(1) 0.0000000 0.0000000  0.0000000
>> 1973(2) 0.5089089 0.7017644  1.9819006
>> 1973(3) 2.0202688 1.6298400  3.0273857
>> 1973(4) 3.0153056 2.3202898 -0.6350275
>> 1973(5) 4.4895300 3.0060137 -0.6944147
>> 1973(6) 4.9761509 3.6870589 -1.6951727
>>     
>>> head(diff(PPP))
>>>       
>>          PriceIT   PriceUS ExRateUSIT
>> 1973(4)  0.9950369 0.6904498 -3.6624133
>> 1973(7)  0.4842643 0.2259853  2.3995976
>> 1973(10) 0.9478780 0.8810579 -0.1979420
>> 1974(1)  1.3730158 0.8620694 -6.4295795
>> 1974(4)  1.2959112 0.4175387  0.2104218
>> 1974(7)  2.4591418 0.8130157  0.9254661
>>
>> #Series is from:
>> library(zoo)
>> source("priceLev.R") #see below
>>
>> Thanks a lot for your help, I'm really stuck...
>>
>> Mat
>>
>> I had problems copy/paste this directly into R console, but saving it as
>> priceLev.R and sourcing it was ok:
>>
>>
>> PPP<-structure(c(19.60000038147, 19.70000076294, 20, 20.20000076294,
>> 20.5, 20.60000038147, 20.70000076294, 20.70000076294, 21, 21.20000076294,
>> 21.29999923706, 21.70000076294, 22, 22.39999961853, 23, 23.29999923706,
>> 23.70000076294, 24.10000038147, 24.70000076294, 25.20000076294,
>> 26, 26.5, 27, 27.10000038147, 27.5, 27.89999961853, 27.89999961853,
>> 28.20000076294, 28.5, 28.79999923706, 28.89999961853, 29.10000038147,
>> 29.29999923706, 29.70000076294, 30, 30.29999923706, 30.5, 31,
>> 31.70000076294, 32.70000076294, 33.20000076294, 33.29999923706,
>> 33.5, 33.79999923706, 34.40000152588, 35.59999847412, 36.29999923706,
>> 36.79999923706, 37.29999923706, 38.09999847412, 38.79999923706,
>> 39.20000076294, 39.70000076294, 40, 40.29999923706, 40.70000076294,
>> 41.09999847412, 41.40000152588, 42.09999847412, 42.29999923706,
>> 42.79999923706, 43.20000076294, 43.59999847412, 44.09999847412,
>> 44.59999847412, 44.90000152588, 45.29999923706, 45.40000152588,
>> 46.09999847412, 46.59999847412, 47, 47.40000152588, 48.29999923706,
>> 48.90000152588, 49.70000076294, 50.40000152588, 51.09999847412,
>> 51.59999847412, 52, 52.59999847412, 53.79999923706, 55.09999847412,
>> 55.70000076294, 56.70000076294, 58.5, 59.59999847412, 60.20000076294,
>> 61, 61.59999847412, 62.09999847412, 63.20000076294, 63.90000152588,
>> 65.30000305176, 66.40000152588, 67.80000305176, 68.69999694824,
>> 69.90000152588, 71.19999694824, 72.19999694824, 73.30000305176,
>> 74.19999694824, 75, 75.69999694824, 76.19999694824, 77.30000305176,
>> 78.69999694824, 80.09999847412, 80.90000152588, 82, 83.09999847412,
>> 83.80000305176, 84.5, 85.5, 86.40000152588, 87.69999694824, 89.30000305176,
>> 90.5, 92.30000305176, 93.5, 94.09999847412, 95.40000152588, 96.80000305176,
>> 97.59999847412, 98.59999847412, 99.59999847412, 100.19999694824,
>> 101.09999847412, 101.5, 102.80000305176, 104.5, 105.59999847412,
>> 106.09999847412, 107.40000152588, 108.5, 109.19999694824, 110.09999847412,
>> 110.69999694824, 111.30000305176, 111.69999694824, 112, 112.90000152588,
>> 114, 114.69999694824, 115.40000152588, 116.59999847412, 117.80000305176,
>> 118.69999694824, 119.69999694824, 120.40000152588, 121, 121.5,
>> 121.69999694824, 122.19999694824, 123.69999694824, 124.5, 125.30000305176,
>> 126, 126.80000305176, 127.30000305176, 127.59999847412, 128.10000610352,
>> 128.60000610352, 128.60000610352, 128.89999389648, 129.19999694824,
>> 130, 130.39999389648, 130.80000305176, 131.60000610352, 132.10000610352,
>> 132.60000610352, 133, 133.5, 133.89999389648, 134.30000305176,
>> 134.69999694824, 135.60000610352, 136.89999389648, 137.19999694824,
>> 137.5, 138.19999694824, 138.5, 139.19999694824, 139.60000610352,
>> 140, 140.5, 140.89999389648, 141.5, 142.19999694824, 143.30000305176,
>> 144.5, 145, 146.10000610352, 147.30000305176, 148, 149, 149.60000610352,
>> 150.30000305176, 150.69999694824, 150.89999389648, 151.60000610352,
>> 153.10000610352, 42.5999984741, 42.9000015259, 43.2999992371,
>> 43.5999984741, 43.9000015259, 44.2000007629, 44.2999992371, 45.0999984741,
>> 45.2000007629, 45.5999984741, 45.9000015259, 46.2000007629, 46.5999984741,
>> 47.2000007629, 47.7999992371, 48, 48.5999984741, 49, 49.4000015259,
>> 50, 50.5999984741, 51.0999984741, 51.5, 51.9000015259, 52.0999984741,
>> 52.5, 52.7000007629, 52.9000015259, 53.2000007629, 53.5999984741,
>> 54.2000007629, 54.2999992371, 54.5999984741, 54.9000015259, 55.2999992371,
>> 55.5, 55.5999984741, 55.7999992371, 55.9000015259, 56.0999984741,
>> 56.5, 56.7999992371, 57.0999984741, 57.4000015259, 57.5999984741,
>> 57.9000015259, 58, 58.2000007629, 58.5, 59.0999984741, 59.5,
>> 60, 60.2999992371, 60.7000007629, 61, 61.2000007629, 61.4000015259,
>> 61.5999984741, 61.9000015259, 62.0999984741, 62.5, 62.9000015259,
>> 63.4000015259, 63.9000015259, 64.5, 65.1999969482, 65.6999969482,
>> 66, 66.5, 67.0999984741, 67.4000015259, 67.6999969482, 68.3000030518,
>> 69.0999984741, 69.8000030518, 70.5999984741, 71.5, 72.3000030518,
>> 73.0999984741, 73.8000030518, 74.5999984741, 75.1999969482, 75.9000015259,
>> 76.6999969482, 77.8000030518, 78.9000015259, 80.0999984741, 81,
>> 81.8000030518, 82.6999969482, 82.6999969482, 83.3000030518, 84,
>> 84.8000030518, 85.5, 86.3000030518, 87, 87.9000015259, 88.5,
>> 89.0999984741, 89.8000030518, 90.5999984741, 91.5999984741, 92.3000030518,
>> 93.1999969482, 93.4000015259, 93.6999969482, 94, 94.3000030518,
>> 94.5999984741, 94.5, 94.9000015259, 95.8000030518, 97, 97.5,
>> 97.6999969482, 97.9000015259, 98.1999969482, 98, 97.5999984741,
>> 97.8000030518, 97.9000015259, 97.9000015259, 98.5999984741, 99.1999969482,
>> 99.5, 99.9000015259, 100.1999969482, 100.6999969482, 101, 101.1999969482,
>> 101.3000030518, 101.9000015259, 102.4000015259, 102.5999984741,
>> 103.0999984741, 103.4000015259, 103.6999969482, 104.0999984741,
>> 104.5, 105, 105.3000030518, 105.3000030518, 105.3000030518, 105.5,
>> 106, 106.4000015259, 106.9000015259, 107.3000030518, 107.5999984741,
>> 107.8000030518, 108, 108.3000030518, 108.6999969482, 109, 109.3000030518,
>> 109.5999984741, 109.3000030518, 108.8000030518, 108.5999984741,
>> 108.9000015259, 109.5, 109.5, 109.6999969482, 110.1999969482,
>> 110.3000030518, 110.4000015259, 110.5, 111.1999969482, 111.5999984741,
>> 112.0999984741, 112.6999969482, 113.0999984741, 113.5, 113.8000030518,
>> 114.4000015259, 115, 115.3000030518, 115.4000015259, 115.4000015259,
>> 115.6999969482, 116, 116.5, 117.0999984741, 117.5, 118, 118.5,
>> 119, 119.8000030518, 120.1999969482, 120.3000030518, 120.5, 121.0999984741,
>> 121.5999984741, 122.3000030518, 123.0999984741, 123.8000030518,
>> 124.0999984741, 124.4000015259, 124.5999984741, 125, 125.5999984741,
>> 0.00170791273132914, 0.00174209951913706, 0.00176040845258218,
>> 0.00169710137902025, 0.00169609381850337, 0.0016792046735684,
>> 0.00171998616788486, 0.00174231201103162, 0.00176909737593850,
>> 0.00176559905254172, 0.00169038840243291, 0.00164579257106955,
>> 0.00154330508995765, 0.00152751052610713, 0.00156870134431149,
>> 0.00157200571003395, 0.00158080266451816, 0.00153789372388514,
>> 0.00155219247186651, 0.00152690408919378, 0.00151030025882740,
>> 0.0014992053772286, 0.00149961004098130, 0.00151791138210253,
>> 0.00155041165776418, 0.00156779122961396, 0.00158420865760686,
>> 0.00157669023618497, 0.00159370176532851, 0.00159820997361459,
>> 0.00153869820346857, 0.00149628918637955, 0.00147399143728242,
>> 0.00147449127396179, 0.00147210366254964, 0.001464493321869,
>> 0.00142450142450142, 0.00130210030432208, 0.00121129900062598,
>> 0.00113710017662363, 0.00116759682220348, 0.00117799501854215,
>> 0.00119430080008036, 0.00119360230910755, 0.00118369811305430,
>> 0.00116840174992149, 0.00115540150202195, 0.00115210030473245,
>> 0.00113720364788047, 0.00113269527966656, 0.00112759908181671,
>> 0.00112640515330342, 0.00112790438476952, 0.00112949684031799,
>> 0.00113300327052292, 0.00113319581068863, 0.0011317978765388,
>> 0.00113530572839516, 0.00113879652617039, 0.00114160461084470,
>> 0.00114689423295764, 0.00116189904399275, 0.00116919410456185,
>> 0.00116440190827110, 0.00114880470740695, 0.00116339946972441,
>> 0.00118040065178541, 0.00119520008695516, 0.00120499348594498,
>> 0.00123169392646559, 0.00118570513198108, 0.00118629587872915,
>> 0.00119550017935439, 0.00118989544621630, 0.00118880621116386,
>> 0.00118580356321465, 0.00117439812096301, 0.00118280204099774,
>> 0.00121919992832387, 0.00122189634673585, 0.00123260489724270,
>> 0.00121119629142077, 0.00121119629142077, 0.00123289363839214,
>> 0.00124269912368631, 0.00123459841491511, 0.00116349423223834,
>> 0.00114169585595958, 0.00118600047471892, 0.00119730364063127,
>> 0.00120260238929126, 0.00118009415111576, 0.00117420504297619,
>> 0.00114409932379843, 0.00110000106750649, 0.00107040024502102,
>> 0.00104718620797518, 0.000980613256761468, 0.000969649910456641,
>> 0.000927867583147656, 0.000876370465502322, 0.000843525938422606,
>> 0.000823295979829121, 0.000803735801681492, 0.000842027275228413,
>> 0.000837303506576214, 0.00083921485467683, 0.000828939961655155,
>> 0.000814186402967888, 0.000791652779081, 0.000773221759850004,
>> 0.000756658609619449, 0.00077919851937074, 0.000736143901754949,
>> 0.000723452890870574, 0.000718081299390519, 0.00070862183088102,
>> 0.000694473409094806, 0.000680809361993181, 0.000714929155512817,
>> 0.00072742616872993, 0.000714397961872782, 0.000699437666460164,
>> 0.00068853453006531, 0.000681310291427974, 0.00066182213723944,
>> 0.000652141291441826, 0.000629033682327389, 0.000623978237540331,
>> 0.000631787746464218, 0.000615085574381394, 0.000599923208071712,
>> 0.000585950087094921, 0.000600099611261314, 0.000619513417282865,
>> 0.000610321768907887, 0.000589511431606801, 0.000590040105729007,
>> 0.000571043507422813, 0.000561649461352701, 0.000534533528145891,
>> 0.000526598495131594, 0.000536754233000383, 0.000522870343728599,
>> 0.000513146818997007, 0.000489715964740451, 0.000481116189559779,
>> 0.000506101044383357, 0.000503917974554817, 0.000511791668803899,
>> 0.000526224404774398, 0.000533757489838498, 0.000525370111122406,
>> 0.000560089149346125, 0.000570216463691828, 0.000583600817041144,
>> 0.000601272286874565, 0.000629639672710148, 0.000645815416462228,
>> 0.000641251743442265, 0.000654236179260713, 0.000652273182391623,
>> 0.000676448079471965, 0.000704061753916339, 0.000709104198499191,
>> 0.000720632404196826, 0.000713735141009144, 0.000724931887198181,
>> 0.000759203418417369, 0.0007705703819913, 0.000765755403403666,
>> 0.000773419154661628, 0.000774713326752632, 0.000759589821496392,
>> 0.000747406521267597, 0.000743947953430204, 0.000762857979627377,
>> 0.00076770719167874, 0.000807174154425746, 0.000830744187376882,
>> 0.000821773713091906, 0.000800243277082303, 0.000806016075652368,
>> 0.00080580827232252, 0.000794401024342725, 0.000765954804926349,
>> 0.00073138978164888, 0.000715343373114671, 0.00071779778378185,
>> 0.000738901704515748, 0.000769100631071927, 0.000771837212823204,
>> 0.000743428098333353, 0.000737854892260688, 0.000728597449908925,
>> 0.000728969211551167, 0.000706299507030033, 0.000697155593265228,
>> 0.000731320244617571, 0.000722418082886736, 0.00071215938252162,
>> 0.000730332160273162), .Dim = c(202L, 3L), .Dimnames = list(NULL,
>>   c("PriceIT", "PriceUS", "ExRateUSIT")), index = c(1973,
>> 1973.08333333333, 1973.16666666667, 1973.25, 1973.33333333333,
>> 1973.41666666667, 1973.5, 1973.58333333333, 1973.66666666667,
>> 1973.75, 1973.83333333333, 1973.91666666667, 1974, 1974.08333333333,
>> 1974.16666666667, 1974.25, 1974.33333333333, 1974.41666666667,
>> 1974.5, 1974.58333333333, 1974.66666666667, 1974.75, 1974.83333333333,
>> 1974.91666666667, 1975, 1975.08333333333, 1975.16666666667, 1975.25,
>> 1975.33333333333, 1975.41666666667, 1975.5, 1975.58333333333,
>> 1975.66666666667, 1975.75, 1975.83333333333, 1975.91666666667,
>> 1976, 1976.08333333333, 1976.16666666667, 1976.25, 1976.33333333333,
>> 1976.41666666667, 1976.5, 1976.58333333333, 1976.66666666667,
>> 1976.75, 1976.83333333333, 1976.91666666667, 1977, 1977.08333333333,
>> 1977.16666666667, 1977.25, 1977.33333333333, 1977.41666666667,
>> 1977.5, 1977.58333333333, 1977.66666666667, 1977.75, 1977.83333333333,
>> 1977.91666666667, 1978, 1978.08333333333, 1978.16666666667, 1978.25,
>> 1978.33333333333, 1978.41666666667, 1978.5, 1978.58333333333,
>> 1978.66666666667, 1978.75, 1978.83333333333, 1978.91666666667,
>> 1979, 1979.08333333333, 1979.16666666667, 1979.25, 1979.33333333333,
>> 1979.41666666667, 1979.5, 1979.58333333333, 1979.66666666667,
>> 1979.75, 1979.83333333333, 1979.91666666667, 1980, 1980.08333333333,
>> 1980.16666666667, 1980.25, 1980.33333333333, 1980.41666666667,
>> 1980.5, 1980.58333333333, 1980.66666666667, 1980.75, 1980.83333333333,
>> 1980.91666666667, 1981, 1981.08333333333, 1981.16666666667, 1981.25,
>> 1981.33333333333, 1981.41666666667, 1981.5, 1981.58333333333,
>> 1981.66666666667, 1981.75, 1981.83333333333, 1981.91666666667,
>> 1982, 1982.08333333333, 1982.16666666667, 1982.25, 1982.33333333333,
>> 1982.41666666667, 1982.5, 1982.58333333333, 1982.66666666667,
>> 1982.75, 1982.83333333333, 1982.91666666667, 1983, 1983.08333333333,
>> 1983.16666666667, 1983.25, 1983.33333333333, 1983.41666666667,
>> 1983.5, 1983.58333333333, 1983.66666666667, 1983.75, 1983.83333333333,
>> 1983.91666666667, 1984, 1984.08333333333, 1984.16666666667, 1984.25,
>> 1984.33333333333, 1984.41666666667, 1984.5, 1984.58333333333,
>> 1984.66666666667, 1984.75, 1984.83333333333, 1984.91666666667,
>> 1985, 1985.08333333333, 1985.16666666667, 1985.25, 1985.33333333333,
>> 1985.41666666667, 1985.5, 1985.58333333333, 1985.66666666667,
>> 1985.75, 1985.83333333333, 1985.91666666667, 1986, 1986.08333333333,
>> 1986.16666666667, 1986.25, 1986.33333333333, 1986.41666666667,
>> 1986.5, 1986.58333333333, 1986.66666666667, 1986.75, 1986.83333333333,
>> 1986.91666666667, 1987, 1987.08333333333, 1987.16666666667, 1987.25,
>> 1987.33333333333, 1987.41666666667, 1987.5, 1987.58333333333,
>> 1987.66666666667, 1987.75, 1987.83333333333, 1987.91666666667,
>> 1988, 1988.08333333333, 1988.16666666667, 1988.25, 1988.33333333333,
>> 1988.41666666667, 1988.5, 1988.58333333333, 1988.66666666667,
>> 1988.75, 1988.83333333333, 1988.91666666667, 1989, 1989.08333333333,
>> 1989.16666666667, 1989.25, 1989.33333333333, 1989.41666666667,
>> 1989.5, 1989.58333333333, 1989.66666666667, 1989.75), class = c("zooreg",
>> "zoo"), frequency = 12)
>>
>>
>> sessionInfo()
>> R version 2.9.2 (2009-08-24)
>> x86_64-pc-linux-gnu
>>
>> locale:
>> LC_CTYPE=fr_CH.UTF-8;LC_NUMERIC=C;LC_TIME=fr_CH.UTF-8;LC_COLLATE=fr_CH.UTF-8;LC_MONETARY=fr_CH.UTF-8;LC_MESSAGES=fr_CH.UTF-8;LC_PAPER=fr_CH.UTF-8;LC_NAME=fr_CH.UTF-8;LC_ADDRESS=fr_CH.UTF-8;LC_TELEPHONE=fr_CH.UTF-8;LC_MEASUREMENT=fr_CH.UTF-8;LC_IDENTIFICATION=fr_CH.UTF-8
>>
>> attached base packages:
>> [1] stats     graphics  grDevices utils     datasets  methods   base
>> other attached packages:
>> [1] zoo_1.6-2    rkward_0.5.1
>>
>> loaded via a namespace (and not attached):
>> [1] grid_2.9.2      lattice_0.17-26 tools_2.9.2
>>
>> _______________________________________________
>> R-SIG-Finance at stat.math.ethz.ch mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-sig-finance
>> -- Subscriber-posting only. If you want to post, subscribe first.
>> -- Also note that this is not the r-help list where general R questions
>> should go.
>>
>>



More information about the R-SIG-Finance mailing list