[R-SIG-Finance] [R-sig-finance] Garch problem
Patrick Burns
patrick at burns-stat.com
Tue Mar 17 18:03:38 CET 2009
The fit is essentially saying that the half-life
of a shock is infinite. This generally occurs
when the in-sample volatility has a general
trend. One solution is more data. There are
doubtless other paths as well.
RON70 wrote:
> I have following dataset as monthly percentage return for a stock :
>
> 0.173741362
> -0.062237174
>
>
[ ... ]
> -0.001652893
> -0.092301325
>
> Now I fit a GARCH (1,1) model on that :
>
>
>> garch(Delt(dat)[-1], c(1,1))
>>
>
> ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
>
>
> I INITIAL X(I) D(I)
>
> 1 4.331103e-03 1.000e+00
> 2 5.000000e-02 1.000e+00
> 3 5.000000e-02 1.000e+00
>
> IT NF F RELDF PRELDF RELDX STPPAR D*STEP
> NPRELDF
> 0 1 -4.507e+02
> 1 6 -4.508e+02 2.00e-04 3.20e-04 1.5e-03 6.3e+06 1.5e-04
> 1.01e+03
> 2 7 -4.508e+02 1.57e-05 1.69e-05 1.4e-03 2.0e+00 1.5e-04
> 3.19e-01
> 3 13 -4.521e+02 2.85e-03 4.72e-03 5.6e-01 2.0e+00 1.3e-01
> 3.16e-01
> 4 16 -4.602e+02 1.76e-02 4.41e-03 8.1e-01 6.7e-01 5.1e-01
> 1.99e-02
> 5 23 -4.607e+02 1.13e-03 2.77e-03 1.6e-04 7.4e+00 1.8e-04
> 8.48e+00
> 6 24 -4.607e+02 4.81e-05 4.37e-05 1.6e-04 2.0e+00 1.8e-04
> 1.77e+01
> 7 30 -4.638e+02 6.60e-03 8.81e-03 9.8e-02 2.0e+00 1.2e-01
> 1.84e+01
> 8 31 -4.645e+02 1.52e-03 7.73e-03 8.2e-02 1.3e+00 1.2e-01
> 1.39e-02
> 9 33 -4.688e+02 9.18e-03 6.28e-03 6.8e-02 0.0e+00 1.2e-01
> 6.94e-03
> 10 35 -4.693e+02 9.32e-04 9.33e-04 8.9e-03 1.9e+00 1.8e-02
> 2.86e-02
> 11 37 -4.699e+02 1.34e-03 1.59e-03 1.6e-02 1.8e+00 3.5e-02
> 5.99e-02
> 12 38 -4.704e+02 1.05e-03 1.43e-03 1.6e-02 1.6e+00 3.5e-02
> 9.10e-03
> 13 40 -4.705e+02 1.84e-04 2.85e-04 5.3e-03 1.2e+00 1.3e-02
> 7.52e-04
> 14 42 -4.705e+02 3.71e-05 5.18e-05 2.4e-03 8.1e-01 5.0e-03
> 7.09e-05
> 15 44 -4.705e+02 8.51e-07 3.04e-06 4.9e-04 8.2e-01 9.5e-04
> 5.29e-06
> 16 57 -4.705e+02 -7.73e-15 1.09e-15 5.0e-15 4.4e+06 9.1e-15
> 2.87e-07
>
> ***** FALSE CONVERGENCE *****
>
> FUNCTION -4.704848e+02 RELDX 4.961e-15
> FUNC. EVALS 57 GRAD. EVALS 16
> PRELDF 1.088e-15 NPRELDF 2.867e-07
>
> I FINAL X(I) D(I) G(I)
>
> 1 2.824235e-05 1.000e+00 5.619e+01
> 2 8.649332e-02 1.000e+00 -5.899e-01
> 3 9.175397e-01 1.000e+00 -6.866e-01
>
>
> Call:
> garch(x = Delt(dat)[-1], order = c(1, 1))
>
> Coefficient(s):
> a0 a1 b1
> 2.824e-05 8.649e-02 9.175e-01
>
> Warning message:
> In sqrt(pred$e) : NaNs produced
>
> What we see that sum of alpha and beta coef is more than 1. Therefore
> probably I choose a wrong model on my dataset. Can anyone please guide me
> how to modify that model?
>
> Regards,
>
More information about the R-SIG-Finance
mailing list