[R-SIG-Finance] Pricing option using Explicit Finite Differencemethod

davidr at rhotrading.com davidr at rhotrading.com
Tue Jul 17 16:37:08 CEST 2007


Operator precedence strikes again!

> Nj <- 5
> -Nj+1:Nj-1
[1] -5 -4 -3 -2 -1
> (-Nj+1):(Nj-1)
[1] -4 -3 -2 -1  0  1  2  3  4
>

David L. Reiner
Rho Trading Securities, LLC
550 W. Jackson Blvd #1000
Chicago, IL 60661-5704
 
312-244-4610 direct
312-244-4500 main
312-244-4501 fax
 

-----Original Message-----
From: r-sig-finance-bounces at stat.math.ethz.ch
[mailto:r-sig-finance-bounces at stat.math.ethz.ch] On Behalf Of Joseph
Khalil
Sent: Tuesday, July 17, 2007 8:56 AM
To: r-sig-finance at stat.math.ethz.ch
Subject: Re: [R-SIG-Finance] Pricing option using Explicit Finite
Differencemethod

I am a new user of R and new to this mailing list.         I am using 
the book "Implementing Derivatives Models" by Les Clewlow and Chris
Strickland, and I am trying to simulate

the example on pricing options using the explicit finite difference
method in  chapter 3. I have tried the following to price plain European
calls  but I am getting errors.  





K<-100      #Strike price

T<-1        #Time of maturity

t<-0        #Current time

sigma<-0.2  #Volatility

r<-0.06     #Interest rate

div<-0.03   # Dividend yield

S<-100      #Central stock price

dx<-0.02     #Space step around central asset price (logarithmic
measurement exp(dx))

Nj<-30      #Number of space steps

N<-500      #Number of time steps until T



dt<-T/N # Time step

nu<-r-div-0.5*sigma^2

pu<-0.5*dt*((sigma/dx)^2+nu/dx)      # Probability for go up

pm<-1-dt*(sigma/dx)^2-r*dt           # Probability for stay the same

pd<-0.5*dt*((sigma/dx)^2-nu/dx)      # Probability for go down

# Initialise matrices

St<-matrix(data=0,nrow=2*Nj+1,ncol=1)

Call<-matrix(data=0,nrow=2*Nj+1,ncol=N+1)



#Compute independent values

for (j in (-Nj:Nj)) {

St[Nj-j+1,1]<-S*exp(j*dx)                 # Initialise asset prices at
maturity

Call[Nj-j+1,N+1]<-max(0,St[Nj-j+1,1]-K) }  # Initialise option prices at
maturity



#Compute dependent option values

    for (i in (N:1)) {       

# Explicit compution of option values (backwards)

        for (j in (-Nj+1:Nj-1))  { 

           
Call[j+Nj+1,i]<-as.matrix(pu*(as.matrix(Call[j+Nj,i+1])))+as.matrix(pm*C
all[j+Nj+1,i+1])+as.matrix(pd*Call[j+Nj+2,i+1])


                                  }    

Call[1,i]<-Call[2,i]+St[1,1]-St[2,1]  # Upper boundary condition

Call[2*Nj+1,i]<-Call[2*Nj,i]          #Lower boundary condition

}

----- Original Message ----
From: Joseph Khalil <joedtka at yahoo.com>
To: r-sig-finance at stat.math.ethz.ch
Sent: Monday, July 16, 2007 10:01:27 PM
Subject: [R-SIG-Finance] Pricing option using Explicit Finite Difference
method

Hi,

Does anyone have R code to calculate option prices (European, plain
vanilla) using Explicit Finite
Difference method?   

Thanks,
Joe

_______________________________________________
R-SIG-Finance at stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-sig-finance
-- Subscriber-posting only. 
-- If you want to post, subscribe first.

_______________________________________________
R-SIG-Finance at stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-sig-finance
-- Subscriber-posting only. 
-- If you want to post, subscribe first.



More information about the R-SIG-Finance mailing list