[R-SIG-Finance] Pricing option using Explicit Finite Differencemethod

Panov, Evgeny evgeny.panov at citi.com
Tue Jul 17 16:29:03 CEST 2007


By the way, if you decide to pursue the finite-difference route, you may consider using the implicit method, because it needs much less time steps to achieve the same precision (mainly because the explicit method for heat equation is diverges unless number of time steps is very high).

-----Original Message-----
From: r-sig-finance-bounces at stat.math.ethz.ch
[mailto:r-sig-finance-bounces at stat.math.ethz.ch]On Behalf Of Joseph
Khalil
Sent: Tuesday, July 17, 2007 9:56 AM
To: r-sig-finance at stat.math.ethz.ch
Subject: Re: [R-SIG-Finance] Pricing option using Explicit Finite
Differencemethod


I am a new user of R and new to this mailing list.         I am using 
the book "Implementing Derivatives Models" by Les Clewlow and Chris
Strickland, and I am trying to simulate

the example on pricing options using the explicit finite difference
method in  chapter 3. I have tried the following to price plain European calls  but I am getting errors.  





K<-100      #Strike price

T<-1        #Time of maturity

t<-0        #Current time

sigma<-0.2  #Volatility

r<-0.06     #Interest rate

div<-0.03   # Dividend yield

S<-100      #Central stock price

dx<-0.02     #Space step around central asset price (logarithmic measurement exp(dx))

Nj<-30      #Number of space steps

N<-500      #Number of time steps until T



dt<-T/N # Time step

nu<-r-div-0.5*sigma^2

pu<-0.5*dt*((sigma/dx)^2+nu/dx)      # Probability for go up

pm<-1-dt*(sigma/dx)^2-r*dt           # Probability for stay the same

pd<-0.5*dt*((sigma/dx)^2-nu/dx)      # Probability for go down

# Initialise matrices

St<-matrix(data=0,nrow=2*Nj+1,ncol=1)

Call<-matrix(data=0,nrow=2*Nj+1,ncol=N+1)



#Compute independent values

for (j in (-Nj:Nj)) {

St[Nj-j+1,1]<-S*exp(j*dx)                 # Initialise asset prices at maturity

Call[Nj-j+1,N+1]<-max(0,St[Nj-j+1,1]-K) }  # Initialise option prices at maturity



#Compute dependent option values

    for (i in (N:1)) {       

# Explicit compution of option values (backwards)

        for (j in (-Nj+1:Nj-1))  { 

           
Call[j+Nj+1,i]<-as.matrix(pu*(as.matrix(Call[j+Nj,i+1])))+as.matrix(pm*Call[j+Nj+1,i+1])+as.matrix(pd*Call[j+Nj+2,i+1])


                                  }    

Call[1,i]<-Call[2,i]+St[1,1]-St[2,1]  # Upper boundary condition

Call[2*Nj+1,i]<-Call[2*Nj,i]          #Lower boundary condition

}

----- Original Message ----
From: Joseph Khalil <joedtka at yahoo.com>
To: r-sig-finance at stat.math.ethz.ch
Sent: Monday, July 16, 2007 10:01:27 PM
Subject: [R-SIG-Finance] Pricing option using Explicit Finite Difference method

Hi,

Does anyone have R code to calculate option prices (European, plain vanilla) using Explicit Finite
Difference method?   

Thanks,
Joe

_______________________________________________
R-SIG-Finance at stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-sig-finance
-- Subscriber-posting only. 
-- If you want to post, subscribe first.

_______________________________________________
R-SIG-Finance at stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-sig-finance
-- Subscriber-posting only. 
-- If you want to post, subscribe first.



More information about the R-SIG-Finance mailing list