[R-sig-eco] glm(binomial) vs. logistf
Martin Weiser
weiser2 at natur.cuni.cz
Thu Oct 29 20:10:40 CET 2015
Dear friends,
Is there any reason why to run logistic regression (binomial response)
by glm() and not by logistf() by default? In particular when having
sparse data (e.g. 8 presences in 100 samples), frequently with
quasi-separation (all presences at one level of the predictor, together
with many absences).
I tried to read some papers by G. Heinze - I did not get the whole
thing, but it seems to me that both terms estimation and testing
procedure should be more reliable using logistf(). Am I wrong?
So, is there any reason why to use binomial glm?
I am sorry for my ignorance - there should be a reason why people stick
to glm() - I just do not know what it is. Could you explain it to me or
point me to something to read, please? I am not a statistician by
training, however.
Thank you for your patience.
Kind regards,
Martin W.
--
------------------------------
Pokud je tento e-mail součástí obchodního jednání, Přírodovědecká fakulta
Univerzity Karlovy v Praze:
a) si vyhrazuje právo jednání kdykoliv ukončit a to i bez uvedení důvodu,
b) stanovuje, že smlouva musí mít písemnou formu,
c) vylučuje přijetí nabídky s dodatkem či odchylkou,
d) stanovuje, že smlouva je uzavřena teprve výslovným dosažením shody na
všech náležitostech smlouvy.
More information about the R-sig-ecology
mailing list