[R-sig-eco] proportion data with many zeros
v_coudrain at voila.fr
v_coudrain at voila.fr
Fri Feb 1 09:30:52 CET 2013
Dear all, I am trying to test how the proportion of pollen of different plants found in the brood cells of a wild bee changes over time. I conducted 4 sampling sessions
(thus time is a factor with 4 levels) and collected several pollen samples for each time point (300 pollen grains counted for each sample). I thought about applying a
quasi-binomial glm:
y = cbind(total pollen - pollen of plant X, pollen of plant X)
glm(y~time, family=quasibinomial)
The problem is that I have a lot of zero value, because the pollen of some plants only occurred rarely or very clumped in time. I thought about applying a zero-inflated
model, but I have never used it and I am not sure if it is suitable for proportion data. Additionally I wondered if I have to consider the fact that I don't have the same
number of pollen sample for each date, which makes my design unbalanced.
Thank you in advance for advice.
Best wishes
Valérie
___________________________________________________________
CAN 2013 : résultats et matchs en direct à suivre sur Voila.fr http://sports.voila.fr/football/can/
More information about the R-sig-ecology
mailing list