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Abstract

This paper proposes a quantile regression estimator for a heterogeneous panel model with lagged

dependent variables and interactive effects. The paper adopts the Common Correlated Effects

(CCE) approach proposed by Pesaran (2006) and Chudik and Pesaran (2015) and demonstrates

that the extension to the estimation of dynamic quantile regression models is feasible under similar

conditions to the ones used in the literature. The new quantile regression estimator is shown to be

consistent and its asymptotic distribution is derived. Monte Carlo studies are carried out to study

the small sample behavior of the proposed approach. The evidence shows that the estimator can

significantly improve on the performance of existing estimators as long as the time series dimension

of the panel is large. We present an application to the evaluation of Time-of-Use pricing using a

large randomized control trial.
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1. Introduction

In the last decade, the literature on linear panel data models has made significant progress on

the estimation of models with multi-factor error structure. Recent papers have focused on the

estimation of models with a fixed number of unobserved factors (see e.g. Pesaran (2006), Bai

(2009), Pesaran and Chudik (2014), Moon and Weidner (2015, 2017), Chudik and Pesaran (2015)).

The Common Correlated Effects (CCE) approach of Pesaran (2006) is robust to cross-sectional

dependence and slope heterogeneity, and it has been further developed to allow for possible unit

roots in factors and spatial forms of weak cross-sectional dependence (see e.g., Kapetanios, Pesaran,

and Yagamata (2011), Pesaran and Tosetti (2011) and Pesaran, Smith and Yagamata (2013)).

The estimation of dynamic panel data models is investigated in Chudik and Pesaran (2015) and

Moon and Weidner (2015, 2017). Moon and Weidner develop estimation approaches for models

with lagged dependent variables and cross-sectional dependence, but they assume homogeneous

coefficients. Chudik and Pesaran (2015) extend the approach developed by Pesaran (2006) to

dynamic panel data models with heterogeneous slopes, for situations where the cross-sectional

dimension (N) and the time-series dimension (T ) are relatively large. This method, however, does

not offer the possibility of estimating heterogeneous distributional effects, which is an important

consideration for practice. For instance, the effect of a policy can be heterogeneous throughout the

conditional distribution of the response variable, and therefore, it might not be well summarized

by the average treatment effect.

Quantile regression, as introduced in the seminal work by Koenker and Bassett (1978), provides

a convenient way to estimate distributional effects of policy variables, although in general these

type of heterogeneous treatment effects are identified and estimated under the assumption that the

slope coefficients are the same over all cross-sectional units. This condition is used in a number

of different approaches that have been recently developed for the estimation of panel quantile

regression models. The recent literature include work by Koenker (2004), Lamarche (2010), Galvao

(2011), Rosen (2012), Galvao, Lamarche and Lima (2013), Chernozhukov, Fernández-Val, Hahn and

Newey (2013), Chernozhukov, Fernández-Val, Hoderlein, Holzmann and Newey (2015), Harding and

Lamarche (2014, 2017), and Arellano and Bonhomme (2016), among others. Slope heterogeneity

in quantile regression is investigated in Galvao and Wang (2015). In related work, Ando and

Bai (2017) and Chen, Dolado and Gonzalo (2019) investigate quantile factor models. With the

exception of Galvao (2011) and Arellano and Bonhomme (2016), the literature has focused on

estimating static models. Moreover, the panel quantile regression literature does not address cross-

sectional dependence with the exception of Harding and Lamarche (2014) that adopt the approach
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proposed by Pesaran (2006) to estimate a static model with interactive effects. This paper extends

the panel quantile literature to dynamic models with heterogeneous slopes and multi-factor error

structure when both T and N are large.

We focus on estimation and inference of mean quantile coefficients. We allow for the possibility that

unobserved factors and included regressors are correlated and study the conditions under which the

slope coefficients are estimated consistently. The proposed estimator is generally applicable, but

requires an important rank condition which is met only if the number of unobserved factors minus

1 is less than or equal to the number of exogenous variables. In practice, this condition implies that

practitioners can identify and estimate a model with many factors if a sufficiently large number of

variables are included in the model. Another important condition, which is similar to a condition

used in Chudik and Pesaran (2015), is that a sufficient number of lagged values of cross section

averages are need to approximate the unobserved factors. Under standard regularity conditions

including T tending to infinity at a faster rate than N as in Kato, Galvao and Montes-Rojas

(2012), we show that the average quantile estimator is consistent and asymptotically Gaussian.

Moreover, we investigate the finite sample performance of the proposed approach in comparison

with the method for dynamic models developed by Galvao (2011). Using a comprehensive set of

Monte Carlo experiments, we find that the proposed estimator has a satisfactory performance under

different dynamic specifications when T is relatively large.

We apply the method to estimate how consumers respond to time-of-use (TOU) electricity pricing

and different type of technologies that allow communication between customers and utility com-

panies. The use of a quantile-specific demand equation allows us to estimate the short and long

run impacts of different enabling technologies, while including three key features of the problem:

dynamics, slope heterogeneity and cross-sectional dependence. We use a data set of more than

6.5 million observations obtained from a large randomized control trial which includes N = 779

customers observed over T = 8639 time intervals.

Our findings suggest that smart thermostats are particularly effective relative to other enabling

technologies and the differential effects are more pronounced at the lower tail of the conditional

distribution of energy consumption. Smart thermostats, in addition of providing real time infor-

mation on consumption and pricing, allow households to respond to price changes in advance by

programming temperature settings for different times of the day. We also find that treated house-

holds appear to reduce overall consumption as a result of these technologies relative to the control
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group, but the average response does not truly summarize the distributional effect of the tech-

nologies. We also investigate the long-run effect of a change in energy price for different enabling

technologies across different age and income groups.

The paper is organized as follows. The next section introduces the model and the proposed estima-

tor. It also establishes the asymptotic properties of the estimator. Section 3 provides simulation

experiments to investigate the small sample performance of the proposed estimator. Section 4

demonstrates how the proposed estimator can be used in practice by exploring an application of

electricity pricing and smart technology. Section 5 concludes. Mathematical proofs and additional

Monte Carlo results are offered in an Online Appendix.

Notations: Generic positive finite constants are denoted by Ka,Kb, . . ., and can take different values

at different instances and are bounded in N and T (the panel dimensions). The largest and the

smallest eigenvalues of the N × N real symmetric matrix A = (aij) are denoted by ζmax(A) and

ζmin(A), respectively, and its spectral (or operator) norm by ∥A∥ = ζ
1/2
max(A′A).

a.s.−→ denotes

almost sure convergence,
p−→ convergence in probability, and

d−→ convergence in distribution. We

denote ∥x∥1 =
∑n

i=1 |xi| as the ℓ1 norm of vector x. All asymptotics are carried out under N and

T → ∞, jointly.

2. Model and assumptions

As it will be clear below, the estimation of a dynamic quantile regression model with factors is

challenging, because these factors are not observed by the researcher and could be correlated with

other included regressors in the model. Furthermore, the autoregressive nature of the quantile

model limits practitioners from employing the CCE approach of Pesaran (2006) and Chudik and

Pesaran (2015). To fill this gap in the literature, this section proposes estimation strategies based

on individual quantile regression models augmented by cross section averages of observable vari-

ables and their lags. While the proposed estimation method is simple to implement in practice,

they require large N and T quantile models that include several time varying regressors possibly

correlated with the latent factors.

We consider a dynamic panel data model for i = 1, 2, . . . , N and t = 1, 2, . . . , T , where yit ∈ R is

the response variable for cross-sectional unit i at time t and yit−1 denotes the lagged dependent

variable:

yit = αi + λiyit−1 + β′
ixit + γ ′

ift + ξit. (2.1)

This article is protected by copyright. All rights reserved.
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We assume that yit started a long time ago. The variable xit is a px×1 vector of regressors specific

to cross-sectional unit i at time t, βi is the vector of associated regression coefficients, ft is an r× 1

vector of unobserved factors, γi is a vector of latent factor loadings, and αi is an individual effect

potentially correlated with the exogenous regressors, xit. The error term is ξit.

If a practitioner estimates the model assuming homogeneous parameters (i.e., βi = β for 1 ≤ i ≤
N), the estimates are not consistent because the method does not correct for the bias arising from

a conjunction of dynamics, heterogeneity and cross-sectional dependence. Furthermore, the asymp-

totic variance of the estimator is misspecified too. Pesaran and Smith (1995) provide expressions

for the bias of the homogeneous fixed effects estimates for a linear heterogeneous dynamic model

and found that the bias can be substantial.

The associated conditional panel quantile function is given by

QYit(τ |yit−1,xit,θi(τ), ft) = αi(τ) + λi(τ)yit−1 + x′
itβi(τ) + f ′tγi(τ), (2.2)

where τ is a quantile in the interval (0, 1), θi(τ) = (αi(τ), λi(τ),β
′
i(τ),γ

′
i(τ))

′ and the condi-

tional quantile function is defined as QYit(τ |Fit) := inf{y : P (Yit ≤ y|Fit) ≥ τ}, where Fit =

(yit−1,x
′
it,θi(τ)

′, f ′t)
′. The term f ′tγi(τ) can be interpreted as a quantile-specific function capturing

unobserved heterogeneity, not adequately controlled by the inclusion of xit. The quantile model

can be considered to be semi-parametric since the functional form of the conditional distribution

of yit given Fit is left unspecified and no parametric assumption is imposed on the relation between

the regressors and the latent variables in the model.

To relate the quantile function (2.2) to the underlying data generating process (2.1), we introduce

the quantile and unit specific error term uit(τ) defined by

uit(τ) = yit −QYit(τ |Fit). (2.3)

From the definition of quantiles, it now readily follows that,

P (uit(τ) ≤ 0|Fit) = τ. (2.4)

Under (2.1) and using (2.3), it also follows that

uit(τ) = ξit + [µit −QYit(τ |Fit)], (2.5)

where µit = αi + λiyit−1 + β′
ixit + γ ′

ift is the predictable component of (2.1), with respect to the

information set Fit. Hence, conditional on Fit, uit(τ) and ξit have the same properties over i and t.

But it is clear that, in general, E(uit(τ)) ̸= 0, even though E(ξit) = 0.

This article is protected by copyright. All rights reserved.
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The px × 1 vector of regressors is assumed to follow the general linear process

xit = αix + Γ′
ift + vit, (2.6)

where αix is an individual effect, Γi is a r × px matrix of factor loadings in the xit equation, and

vit is a px-dimensional vector assumed to follow a stationary process independently distributed of

other variables in the model.

Naturally, model (2.1) or (2.2) can accommodate additional lags of the dependent variable, time-

invariant covariates, and lags of the exogenous covariates. These variations can be incorporated at

a cost of additional notational complexity.

Due to the combination of cross-sectional error dependence (γi ̸= 0), and dynamics (λi ̸= 0) in

equation (2.2), existing panel quantile regression approaches are inconsistent for the estimation of

(λi,β
′
i)
′ for i = 1, . . . , N . In this paper, we are interested in estimating the contemporaneous effect

of a change in xit on the quantiles of the conditional distribution of the response variable as well as

its long run effect. For instance, in Section 4, we estimate an autoregressive panel quantile model

for energy consumption with interactive effects.

2.1. Estimation

We consider consistent estimation of the parameters of interest by estimating the dynamic quantile

regression model with interactive effects defined by (2.2). To this end, we make the the following

assumptions:

Assumption 1. The error terms ξit for i = 1, 2, . . . , N and t = 1, 2, . . . , T in equation (2.1) have

mean zero and are serially and cross-sectionally independent conditional on Fit.

Remark 1. It follows from (2.3) that under Assumption 1, the quantile specific errors, uit(τ), are

also serially and cross-sectionally independent, but in general, uit(τ) need not have mean zero.

Assumption 2. The r×1 vector of common factors ft = (f1t, f2t, . . . , frt)
′ is a covariance station-

ary process with absolute summable autocovariances, distributed independently of ξit and vit for all

i and t.

Assumption 3. The factor loadings γi = γ + ηγi and vec[Γi] = vec[Γ] + ηΓi are distributed

independently of ξjt and vjt for all i, j and t with means γ and Γ, and bounded variances. The

error terms ηγi and ηΓi are distributed independently of each other. Moreover, these random

variables are independently and identically distributed over i with zero means and covariances Ωγ

and ΩΓ, respectively, with ∥Ωγ∥ < K and ∥ΩΓ∥ < K.

This article is protected by copyright. All rights reserved.
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Assumption 4. The regressors xit = (xit,1, xit,2, . . . , xit,px)
′ ∈ X ⊆ Rpx are generated according

to equation (2.6), and the vector of errors vit in (2.6) follows a stationary process with mean

zero, finite covariance matrix, and finite fourth order cumulants, and summable autocovariances

(uniformly in i). The innovations vit and ξit are independently distributed.

Assumption 5. The px+1-dimensional vector of slope coefficients ϑi = [λi,β
′
i]
′ follows the random

coefficient representation:

λi = λ+ (1− |λ|)νiλ (2.7)

βi = β + νiβ,

where ∥β∥1 < K, supi |νiλ| and |λ| are bounded away from 1, and

νi =

(
νiλ

νiβ

)
∼ IID (0,Ωϑ) , (2.8)

with ∥Ωϑ∥ < K, Ωϑ is a symmetric positive definite matrix. Furthermore,

E(λliαi|Ft) = al, E(λliβi|Ft) = bl, E(λliγi|Ft) = cl, (2.9)

for all i and l = 0, 1, 2, .... where Ft = (ft, ft−1, . . . ;xit,xit−1, . . . , i = 1, 2, . . . , N), and al, bl and

cl are exponentially decaying in l, such that |al| < Kaρ
l, ∥bl∥ < Kbρ

l, and ∥cl∥ < Kcρ
l for

some positive ρ < 1. The parameters λi and βi are independently distributed over i, and νi is

independently distributed of γi, Γi, ξit, v
′
it, and ft for all i and t.

Assumption 6. The (px + 1)× r matrix C = E(Ci) = (γ,Γ)′ has full column rank.

Assumption 1 is standard in panel data models and as seen from Remark 1, implies Assumption

A3 in Ando and Bai (2017). The remaining assumptions are similar to those in Pesaran (2006) and

Chudik and Pesaran (2015). Also, it is common to assume that there exists anN -dimensional vector

of non-stochastic weights that satisfy granularity conditions, namely that they are of order N−1.

Such effects are important in small samples but do not affect the asymptotic results established

below in Section 2.2. Therefore, without loss of generality, we consider the case of equal weights,

1/N . Assumption 5 introduces heterogeneous slope coefficients assuming that deviations of ϑi with

respect to ϑ are mean-zero random variables independently distributed of other variables in the

model. Specification (2.7) ensures that supi |λi| < 1, so long as supi |νiλ| < 1, and |λ| < 1. A

convenient distribution for νiλ is a beta distribution defined on (0, 1). The moment conditions in

(2.9) are required for consistent estimation of ft (up to a non-singular r × r transformation) from

cross section averages of zit = (yit,x
′
it)

′ and their lagged values. These conditions are met when

This article is protected by copyright. All rights reserved.
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λi is independently distributed of αi,βi and γi and E
(
λli
)
decays exponentially in l. This last

condition is met, for example, if λi is distributed over i uniformly on [−b, b] for any b in 0 < b < 1.

Moreover, it is worth mentioning that the full rank Assumption 6 implies that px ≥ r − 1, and

ensures the large N representation of the unobserved factors. Equation (2.1), after pre-multiplying

by (1− λiL)
−1 where L is the lag operator, can be written as,

yit =
∞∑
l=0

λliαi +
∞∑
l=0

λliβ
′
ixit−l +

∞∑
l=0

λliγ
′
ift−l +

∞∑
l=0

λliξit−l. (2.10)

We now derive a large N representation for a linear combination of the latent factors following

Chudik and Pesaran (2015). Denote the last term of the above equation by ζit, and note that it

can be written as ζit = λiζit−1 + ξit, which is a stationary AR(1) process for all 1 ≤ i ≤ N , since

by Assumption 5 supi |λi| ≤ ρ < 1. Also, since for each t, the error, ξit, and λi are assumed to be

cross-sectionally independent, it then readily follows from Pesaran (2006) that

ζ̄t = N−1
N∑
i=1

ζit = Op(N
−1/2).

Similarly, consider the cross section averages of the other terms of (2.10), and note that under

Assumption 5, for the first term we have (recall that by Assumption 5 {al} is absolute summable)

∞∑
l=0

[
N−1

N∑
i=1

λliαi

]
=

∞∑
l=0

al +Op(N
−1/2).

Similarly, conditional on Ft we have (noting that by Assumption 5, bl and cl are absolute summable)

∞∑
l=0

[
N−1

N∑
i=1

λliβ
′
ixit−l

]
=

∞∑
l=0

b′
lx̄t−l +Op(N

−1/2),

∞∑
l=0

[
N−1

N∑
i=1

λliγ
′
i

]
ft−l =

∞∑
l=0

c′lft−l +Op(N
−1/2).

Hence, overall

ȳt = a(1) + b(L)′x̄t + c(L)′ft +Op(N
−1/2), (2.11)

where a(1) =
∑∞

l=0 al,b(L) =
∑∞

l=0 blL
l, and c(L) =

∑∞
l=0 clL

l.

Similarly, taking cross-sectional averages of equation (2.6), we obtain,

x̄t = ᾱx + Γ′ft +Op(N
−1/2), (2.12)

This article is protected by copyright. All rights reserved.
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where ᾱx = N−1
∑N

i=1αix and Γ = E(Γi). See also Assumptions 5 and 6. Combining (2.11) and

(2.12), we have

C(L)ft = Λ(L)z̄t − d+Op(N
−1/2), (2.13)

where z̄t = (ȳt, x̄
′
t)
′,

d =

(
a(1)

ᾱx

)
, C(L) =

(
c(L)′

Γ′

)
, Λ(L) =

(
1 −b(L)′

0 Ipx

)
.

Pre-multiplying both sides of (2.13) by C(L)′ under Assumption 6, we obtain the following result

for ft:

ft = f0 +G(L)z̄t +Op(N
−1/2), (2.14)

where f0 = −(C(1)′C(1))−1C(1)′d and G(L) = [C(L)′C(L)]−1C(L)′Λ(L) is an r × (px + 1) dis-

tributed lag matrix.

Assumption 7. The infinite order distributed lag matrix function G(L) = G0 + G1L + . . . =∑∞
l=0GlL

l, where ∥Gl∥ < Kρl for all l and some positive ρ < 1 and the finite constant K > 0.

Assumption 7 follows from the exponential decay condition stated in Assumption 5 (see Lemma

A.1 in Chudik and Pesaran (2013)). Recall that G(L) is an infinite order distributed lag matrix

function with exponentially decaying coefficients and hence can be suitably truncated.

Let δi(L) = γ ′
i

∑∞
l=0GlL

l =
∑∞

l=0 δilL
l, δil = (δ′iy,l, δ

′
ix,l)

′, δiy,l is a reduced form coefficient for

the cross-sectional average of yit−l, δix,l is a reduced form coefficient for the cross-sectional average

of xit−l, and z̄t−l = (ȳt−l, x̄
′
t−l)

′ is a (px + 1) × 1 dimensional vector. Finally, substituting the

representation of the factors in equation (2.1), we obtain

yit = βi0 + λiyit−1 + x′
itβi +

pT∑
l=0

z̄′t−lδil + ξit + hit,N , (2.15)

where βi0 = αi + γ ′
if0, and

hit,N =

∞∑
l=pT+1

z̄′t−lδil +Op(N
−1/2). (2.16)

The total number of unknown parameters for the first part of (2.15) which is augmented with

cross-sectional averages and their lagged values is (2 + px) + (px + 1)(pT + 1). The second part of

(2.15) includes ξit, a component due to the truncation of the underlying infinite order distributed

lag function δi(L), and an Op(N
−1/2) term associated with approximating ft with cross-section

averages. Moreover, the number of lags is denoted by pT and it is assumed that pTi = pT for all

This article is protected by copyright. All rights reserved.
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i for the simplicity of exposition. It is also assumed that the number of lags to approximate the

factors is known and that E(λli) decays exponentially which is satisfied by Assumption 5.

Remark 2. Since f0 is not identified and its value can be absorbed in the intercept term of equations

(2.11) and (2.12), in what follows, and without loss of generality, we set f0 = 0, and note that under

this normalization β0i = αi.

Define Xit = (yit−1,x
′
it, 1, z̄

′
t, z̄

′
t−1, ..., z̄

′
t−pT )

′, πi = (λi,β
′
i, αi, δ

′
i)
′, δi = (δ′i1, δ

′
i2, . . . , δ

′
ipT

)′. Con-

sider now equation (2.15), rewrite it more compactly as,

yit = X′
itπi + hit,N + ξit, (2.17)

and consider the following two optimization problems:

θ̂i(τ) = arg min
θi∈Θi

1

T

T∑
t=1

ρτ (yit −W′
itθi), (2.18)

where ρτ (u) = u(τ−I(u ≤ 0)) is the standard quantile regression loss function, θi = (λi,β
′
i, αi,γ

′
i)
′,

Θi is a compact set in R2+px+r, Wit = (yit−1,x
′
it, 1, f

′
t)

′ depends on the latent factor ft following

equation (2.1), and

π̂i(τ) = arg min
πi∈Πi

1

T

T∑
t=1

ρτ (yit −X′
itπi), (2.19)

where πi(τ) := (λi(τ),βi(τ)
′, αi(τ), δi(τ)

′)′ and Πi is a compact set in R(2+px)+(px+1)(pT+2). The

first optimization problem depends on ft, and it is not feasible. The second optimization problem is

feasible, but its use to obtain estimates of λi(τ) and βi(τ) requires justification. A formal analysis of

the relationship between the two optimization problems is provided in the Online Appendix. Here,

we provide an intuitive rationale by showing that under our assumptions the two optimization

problems converge as N , T and pT → ∞.

With this in mind, using equations (2.1) and (2.17), first note that

ρτ (yit −W′
itθi)− ρτ (yit −X′

itπi) = ρτ (ξit)− ρτ (ξit + hit,N ), (2.20)

and by Knight’s (1998) identity, we have that

|ρτ (ξit)− ρτ (ξit + hit,N )| ≤ 3 |hit,N | , (2.21)

and hence the difference between the feasible and infeasible criteria is:∣∣∣∣∣ 1T
T∑
t=1

ρτ (ξit)−
1

T

T∑
t=1

ρτ (ξit + hit,N )

∣∣∣∣∣ ≤ K
1

T

T∑
t=1

|hit,N | , (2.22)

This article is protected by copyright. All rights reserved.
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which upon using (2.16), yields∣∣∣∣∣ 1T
T∑
t=1

ρτ (ξit + hit,N )−
1

T

T∑
t=1

ρτ (ξit)

∣∣∣∣∣ ≤ K
1

T

T∑
t=1

∣∣∣∣∣∣
∞∑

l=pT+1

z̄′t−lδil

∣∣∣∣∣∣+Op

(
1√
N

)
. (2.23)

But,

1

T

T∑
t=1

∣∣∣∣∣∣
∞∑

l=pT+1

z̄′t−lδil

∣∣∣∣∣∣ ≤ 1

T

T∑
t=1

∞∑
l=pT+1

∥z̄t−l∥∥δil∥,

and since under Assumption 7, ∥δil∥ < Kρl for all i and l, then

1

T

T∑
t=1

∣∣∣∣∣∣
∞∑

l=pT+1

z̄′t−lδil

∣∣∣∣∣∣ ≤ KρpT+1
∞∑
j=0

ρj

(
1

T

T∑
t=1

∥z̄t−j−pT−1∥

)

≤
(
KρpT+1

1− ρ

)
sup
j

(
1

T

T∑
t=1

∥z̄t−j−pT−1∥

)
.

Using this results in (2.23), now yields∣∣∣∣∣ 1T
T∑
t=1

ρτ (ξit + hit,N )−
1

T

T∑
t=1

ρτ (ξit)

∣∣∣∣∣ ≤
(
KρpT+1

1− ρ

)
sup
j

(
1

T

T∑
t=1

∥z̄t−j−pT−1∥

)
+Op

(
1√
N

)
,

which tends to zero as N , T , and pT → ∞, since under Assumption 7, 0 < ρ < 1, and under

Assumptions 4 and 5, {z̄t} process is stationary and its average is bounded in pT .

In short, having replaced the unobserved factors, ft, in (2.1) by the current and lagged cross-section

averages z̄t, we can now consider the approximate quantile function associated with (2.15) which

we write as

QYit(τ |F̄it) = αi(τ) + λi(τ)yit−1 + x′
itβi(τ) +

pT∑
l=0

z̄′t−lδil(τ), (2.24)

where the feasible set F̄it includes xit, yit−1, and z̄t−s for all s = 0, 1, 2, . . . , pT .

This quantile function can now be used to estimate the parameters of interest ϑi(τ) := (λi(τ),βi(τ)
′)′

for each i and 0 < τ < 1, by minimizing the individual specific objective function given by (2.19).

We also propose a quantile mean group estimator for ϑ(τ) := E((λi(τ),βi(τ)
′)′). The estimator is,

ϑ̂(τ) =
1

N

N∑
i=1

ϑ̂i(τ) =
1

N

N∑
i=1

(Ξi ◦ π̂i(τ)) , (2.25)

where ◦ denotes Hadamard product, Ξi = (ι′i,0
′
i)
′ with ιi denoting a px + 1 dimensional vector

of ones and 0i a (px + 1)(pT + 1) dimensional vector of zeros. We denote the estimator defined

in (2.25) as quantile common correlated effects mean group estimator, or simply QMG. One could
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also consider a pooled version, the common correlated effects pooled estimator proposed in Pesaran

(2006). We can consider a weighted average of the individual estimates with weights defined by

the covariance matrix of π̂i(τ).

The interpretation of the estimator for each i and 0 < τ < 1 defined in (2.25) is associated

with heterogeneous coefficients modeled as ϑi(τ) = ϑ(τ) + νi, where νi is a mean-zero error

term independent of the regressors. Although it is possible to consider other functionals of the

random coefficients ϑi(τ), we are interested in ϑ(τ), which motivates the average. Large N helps

to understand the average restriction and recover the parameter of interest. Furthermore, note

that we need a panel with large T , because of the short T bias involved in estimating quantile

regressions with lagged dependent variables, and the fact that we are approximating ft by current

and past values of cross section averages, z̄t. We need both N and T to be large for this purpose.

2.2. Asymptotic Theory

This section investigates the large sample properties of the proposed quantile estimator and its

mean group counterpart defined by equations (2.19) and (2.25), respectively. Throughout this

section, we write equation (2.17) as yit = X′
itπi + eit, where eit = ξit + hit,N , hit,N is defined by

(2.16), and recall that Xit = (yit−1,x
′
it, 1, z̄

′
t, z̄

′
t−1, ..., z̄

′
t−pT )

′. Recall also that hit,N → 0 as N , T ,

and pT → ∞.

The following result states the weak consistency of the estimator:

Theorem 1 (Uniform consistency of π̂i(τ)). Suppose the τ -th conditional quantile function of yit

for i = 1, ..., N and t = 1, ..., T is given by the panel data model (2.2)-(2.6), and Assumptions 1-7

and S.1-S.2 hold. As N , T and pT go jointly to infinity such that p3T /T → κ, 0 < κ < ∞, and

log(N)/T → 0, the cross-section augmented quantile regression estimator, π̂i(τ), defined by (2.19),

is consistent uniformly over 1 ≤ i ≤ N .

A proof of Theorem 1 is in the Online Appendix. It is perhaps worth noting that πi(τ) is estimated

by quantile regressions for each unit i separately, but we augment such quantile regressions with

z̄t, z̄t−1, . . . , z̄t−pT to account for the unobserved factors, ft. For N sufficiently large, the consistency

of quantile estimators for each unit i can be justified using standard (non-panel) results for quantile

regressions. Thus, if N is fixed, then
√
T (π̂i(τ) − πi(τ)) converges in distribution to a mean zero

random variable with covariance V, under T → ∞ and p3T /T → κ. We need, however, N → ∞ for

consistency of our approach.
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The result of Theorem 1 holds when log(N)/T → 0, as N → ∞. This is the rate derived in Kato,

Galvao and Montes-Rojas (2012), and the restriction that T grows at most polynomially in N is

not required in Chudik and Pesaran (2015). The difference in the conditions is explained by the

rates needed to eliminate asymptotically a term in the Bahadur representation of the estimator

that arises in quantile problems with incidental parameters.

As discussed in Chudik and Pesaran (2015), the consistency of individual coefficients is not al-

ways necessary for the consistency of the mean group estimator. Our next result establishes the

consistency of the QMG estimator.

Theorem 2 (Consistency of ϑ̂(τ)). Under the conditions of Theorem 1, as (N,T, pT ) go jointly to

infinity with p3T /T → κ, 0 < κ < ∞, and log(N)/T → 0, the mean quantile group estimator defined

by (2.25) for the panel data model (2.2) - (2.6) is weakly consistent, namely for every 0 < τ < 1,

ϑ̂(τ)− ϑ(τ)
p−→ 0.

The following theorem establishes the asymptotic distribution of the quantile mean group estimator.

Theorem 3 (Asymptotic Distribution of ϑ̂(τ)). Suppose the τ -th conditional quantile function of

yit for i = 1, ..., N and t = 1, ..., T is given by the panel data model (2.2)-(2.6), and Assumptions

1-7 and S.1-S.3 hold. As (N,T, pT ) → ∞ with p3T /T → κ, 0 < κ < ∞, and N2/3(log(N))/T → 0,

the mean group quantile regression estimator, defined by (2.25), for a model with interactive effects,
√
N(ϑ̂(τ)− ϑ(τ))

d−→ N (0,Vv).

Because the approximation of the factors requires N → ∞ and we let N and T go jointly to infinity,

the rates of Theorem 3 suggest that T has to be larger than N in finite samples to eliminate biases

from incidental parameters and truncation of possibly infinite lag polynomials.

The following theorem establishes the asymptotic distribution of the quantile mean group estimator

when the ϑi(τ)’s are homogeneous.

Theorem 4. Under the Assumptions of Theorem 3, as (N,T, pT ) → ∞ with p3T /T → κ, 0 < κ <

∞, and N2(log(N))3/T → 0, the mean group quantile regression estimator, defined by (2.25), for a

model with interactive effects with ϑi(τ) = ϑ(τ) for 1 ≤ i ≤ N ,
√
NT (ϑ̂(τ)−ϑ(τ))

d−→ N (0,Vψ).

The convergence of the QMG estimator in Theorem 3 is
√
N due to the heterogeneity of the

parameter of interest, ϑi(τ). The standard
√
NT convergence is obtained in Theorem 4 when the

coefficients are not heterogeneous. These results appear to be comparable to standard convergence
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results for panel data estimators of conditional mean models with interactive effects (e.g., Pesaran

(2006) and Chudik and Pesaran (2015)), but it is important to point out the difference in terms of

the restrictions on T relative to N , due mainly to the estimation of individual parameters and the

non-linearity of the quantile function.

Remark 3. A recent paper by Galvao, Gu and Volgushev (2018) finds improvements on the rates

of N and T that are similar to the usual conditions in standard nonlinear panel data models.

Their theoretical investigation does not include dynamic models. We expect, however, that similar

improvements can be achieved in our case.

3. Monte Carlo

This section reports results of several simulation exercises designed to evaluate the small sample

performance of the proposed estimator. Observations on yit for i = 1, 2, . . . , N and t = −S +

1,−S + 2, .., 0, 1, ..., T are generated according to the following model with two factors:

yit = β0i + λiyit−1 + β1,ix1,it + β2,ix2,it + γ1,if1,t + γ2,if2,t + κ0i(1 + κ1ix1,it)uit, (3.1)

where β0i = αi + β0, the error term uit is distributed as Fu, κ0i is an i.i.d. random variable

distributed as uniform U(0.9, 1.1), and κ1i is an i.i.d. random variable distributed as uniform

U(0, 0.2). Depending on the values of κ0i and κ1i, we have two conditional quantile functions. (a)

When κ0i = 1 and κ1i = 0 for all 1 ≤ i ≤ N , we have

QYit(τ |yit−1,xit,θi, ft) = β0i(τ) + λiyit−1 + β1,ix1,it + β2,ix2,it + γ1,if1,t + γ2,if2,t, (3.2)

with θi = (αi, λi,β
′
i,γ

′
i)
′, βi = (β1,i, β2,i)

′, γi = (γ1,i, γ2,i)
′, βi0(τ) = αi + β0(τ), and β0(τ) =

β0 + F−1
u (τ). (b) When κ0i ̸= 1 and κ1i ̸= 0 for all 1 ≤ i ≤ N , the conditional quantile function of

(3.1) becomes,

QYit(τ |yit−1,xit,θi(τ), ft) = β0i(τ) + λiyit−1 + β1,i(τ)x1,it + β2,ix2,it + γ1,if1,t + γ2,if2,t, (3.3)

with θi(τ) = (αi(τ), λi,β
′
i(τ),γ

′
i)
′, βi(τ) = (β1,i(τ), β2,i)

′, βi0(τ) = αi(τ) + β0, αi(τ) = αi +

κ0iF
−1
u (τ) and β1,i(τ) = β1,i + κ0iκ1iF

−1
u (τ). For each i, models (3.2) and (3.3) are typically

referred to in the literature as location shift and location-scale shift models, respectively (see, e.g.,

Koenker (2005)). In all experiments, to simplify the exposition and without loss of generality, we

set β0 = 0 and β2,i = 0.5, for 1 ≤ i ≤ N . Note that for S sufficiently large, we have that,

yi0 ≈
αi

1− λi
+ β1,i

S−1∑
j=0

λjix1,i,−j + β2,i

S−1∑
j=0

λjix2,i,−j +

S−1∑
j=0

λji (γ1,if1,−j + γ2,if2,−j + ξi,−j), (3.4)
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where ξit = κ0i(1 + κ1ix1,it)uit. In all the variants of the model considered in the simulations, we

set S = 200 to minimize the effects of the initial values on the outcomes. The regressors, xj,it, are

generated as

xj,it = µj,i + Γj,ifj,t + vj,it, (3.5)

vj,it = ρxvj,it−1 +
√
1− ρ2xεj,it, (3.6)

fj,t = ρffj,t−1 +
√
1− ρ2fεj,t, (3.7)

for j ∈ {1, 2}, with µ1,i = µ2,i = µi ∼ iid N (0.5, 1), εj,it ∼ iid N (0, 1), and εj,t ∼ iid N (0, 1). We

consider the case of relatively persistent regressors by setting ρx = 0.8 and ρf = 0.9. Moreover,

without loss of generality we set xji,−S = 0 and fj,−S = 0.

The factor loadings in equation (3.1), γ1,i and γ2,i, and in equation (3.5), Γ1,i and Γ2,i, are generated

as γj,i ∼ iid N (0.5, 1) and Γj,i ∼ iid N (0.5, 1) for j ∈ {1, 2}. These factor loadings ensure that the

rank condition in Assumption 6 is met. Finally, the fixed effects, αi, are allowed to be correlated

with the errors by generating them as αi = x̄1i + γ1,if̄1 + γ2,if̄2 + ūi + ai, where the individual

specific averages are defined as x̄1i = T−1
∑T

t=1 x1,it, f̄j = T−1
∑T

t=1 fj,t, ūi = T−1
∑T

t=1 uit. The

error term ai in the equation for αi is assumed to be distributed as N (0, 1).

In the simulations, we set λi = λ = 0.5 for i = 1, 2, . . . , N and we assume that the error term uit in

equation (3.1) is iid N (0, 1). In the Online Appendix, we consider the error term uit distributed as

t-student with 4 degrees of freedom (t4), and χ2 with 3 degrees of freedom (χ2
3). We also consider

different variations of the model considered here including the case of heterogeneous λi’s and models

without factor structure. We assume that β1,i = β1 + ν1,i, where β1 = 1 and ν1,i ∼ U(−0.25, 0.25).

Thus, β1,i(τ) = β1,i + κ0iκ1iF
−1
u (τ) = 1 + ν1,i + κ0iκ1iF

−1
u (τ). In this case, E(β1,i(τ)) = β1(τ) =

1 + 0.1F−1
u (τ).

The first columns of Table 3.1 presents the bias and root mean square error (RMSE) for the

slope parameter β1(τ). The table shows results for quantile regression estimators at two quantiles,

τ ∈ {0.25, 0.50}, based on sample sizes of N ∈ {100, 200} and T ∈ {50, 100, 200}. We compare the

performance of the QMG estimator with the instrumental variable quantile regression estimator

for dynamic panel data model developed by Galvao (2011), using yit−2 as an instrument for yit−1.

This estimator is denoted by DQR. However, it is important to bear in mind that Galvao’s model

does not allow for the interactive term, λift, and could generate biases that cannot be eliminated

by use of instrumental variables. The QMG, is computed as the simple cross sectional average of
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τ = 0.50 quantile τ = 0.25 quantile τ = 0.50 quantile τ = 0.25 quantile

N T DQR QMG DQR QMG DQR QMG DQR QMG

Corr(β1,i, x̄1,i) = 0 Corr(β1,i, x̄1,i) ̸= 0

100 50 Bias -0.192 0.050 -0.166 0.063 -0.260 0.040 -0.226 0.053

100 50 RMSE 0.221 0.061 0.198 0.073 0.293 0.090 0.262 0.096

100 100 Bias -0.263 0.024 -0.240 0.031 -0.339 0.019 -0.311 0.026

100 100 RMSE 0.280 0.034 0.259 0.041 0.359 0.077 0.332 0.080

100 200 Bias -0.291 0.002 -0.269 0.008 -0.373 -0.009 -0.344 -0.004

100 200 RMSE 0.300 0.021 0.279 0.023 0.387 0.081 0.359 0.082

200 50 Bias -0.190 0.057 -0.164 0.070 -0.260 0.046 -0.227 0.058

200 50 RMSE 0.216 0.063 0.192 0.075 0.283 0.073 0.253 0.082

200 100 Bias -0.256 0.030 -0.233 0.036 -0.333 0.021 -0.302 0.028

200 100 RMSE 0.272 0.034 0.250 0.040 0.348 0.059 0.319 0.061

200 200 Bias -0.293 0.013 -0.271 0.017 -0.374 0.007 -0.345 0.011

200 200 RMSE 0.302 0.019 0.280 0.022 0.383 0.054 0.355 0.055

Table 3.1. Bias and root mean square error (RMSE) of quantile regression

estimators for β1(τ). DQR denotes the instrumental variable quantile regres-

sion estimator for dynamic quantile regression, and QMG denotes the proposed

mean quantile group estimator defined by (2.25).

standard quantile estimators, β̂1,i(τ), using z̄t = (ȳt, ȳt−1, x̄
′
t)
′ to proxy the true unobserved factors

f1,t and f2,t.

As can be seen from Table 3.1, not surprisingly, the DQR estimator of β1 is biased. Furthermore,

the bias of DQR estimator tends to increase with T , and tends to be similar for both 0.5 and 0.25

quantiles. On the other hand, the performance of the QMG estimator is excellent, with biases

in general lower than 10% for T = 50, and decreasing rapidly to 1% when T = 200. In all the

variations of the model considered in the table, the QMG estimator performs much better than

DQR in terms of RMSE, as well.

In the last four columns of Table 3.1, we show evidence on the performance of the QMG estimator

in models where β1,i is correlated with one of the regressors, x1,it. Specifically, the data generating

process is the same as the model presented in equations (3.1) - (3.7), however, we generate β1,i as

follows:

β1,i = β1 + ν1,i + 0.25
√
T v̄1,i,
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τ = 0.50 quantile τ = 0.25 quantile

Parameter: λ Parameter: θ1 Parameter: λ Parameter: θ1

N T DQR QMG DQR QMG DQR QMG DQR QMG

Corr(β1,i, x̄1,i) = 0

100 50 Bias 0.191 -0.061 0.664 -0.066 0.187 -0.060 0.624 -0.018

100 50 RMSE 0.201 0.063 0.731 0.097 0.197 0.062 0.686 0.080

100 100 Bias 0.226 -0.021 0.714 -0.013 0.223 -0.021 0.659 0.008

100 100 RMSE 0.231 0.024 0.747 0.050 0.229 0.024 0.689 0.052

100 200 Bias 0.240 -0.003 0.735 0.003 0.238 -0.003 0.682 0.015

100 200 RMSE 0.242 0.009 0.752 0.041 0.241 0.009 0.699 0.045

200 50 Bias 0.190 -0.065 0.657 -0.068 0.185 -0.065 0.618 -0.027

200 50 RMSE 0.199 0.066 0.721 0.085 0.195 0.067 0.674 0.060

200 100 Bias 0.222 -0.027 0.701 -0.025 0.220 -0.027 0.652 -0.006

200 100 RMSE 0.227 0.028 0.731 0.043 0.225 0.028 0.678 0.037

200 200 Bias 0.240 -0.010 0.734 -0.005 0.239 -0.010 0.679 0.007

200 200 RMSE 0.243 0.011 0.748 0.027 0.241 0.011 0.693 0.028

Corr(β1,i, x̄1,i) ̸= 0

100 50 Bias 0.227 -0.057 0.746 -0.047 0.222 -0.057 0.704 -0.016

100 50 RMSE 0.234 0.059 0.825 0.168 0.229 0.059 0.785 0.246

100 100 Bias 0.261 -0.019 0.784 -0.003 0.259 -0.019 0.729 0.017

100 100 RMSE 0.265 0.022 0.828 0.151 0.263 0.022 0.778 0.153

100 200 Bias 0.276 0.000 0.801 -0.010 0.274 0.000 0.740 0.000

100 200 RMSE 0.278 0.008 0.840 0.162 0.276 0.008 0.783 0.164

200 50 Bias 0.224 -0.063 0.730 -0.051 0.220 -0.063 0.694 -0.013

200 50 RMSE 0.231 0.064 0.803 0.124 0.227 0.065 0.761 0.115

200 100 Bias 0.258 -0.025 0.778 -0.020 0.255 -0.025 0.731 -0.001

200 100 RMSE 0.262 0.026 0.812 0.110 0.259 0.026 0.765 0.108

200 200 Bias 0.277 -0.008 0.816 -0.005 0.275 -0.008 0.755 0.006

200 200 RMSE 0.279 0.010 0.839 0.106 0.277 0.010 0.779 0.106

Table 3.2. Bias and root mean square error (RMSE) of quantile regression

estimators for λ and θ1. In all the variations of the model, λ = 0.5. DQR

denotes the instrumental variable quantile regression estimator for dynamic

quantile regression, and QMG denotes the proposed mean quantile group esti-

mator defined by (2.25).
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where v̄1,i = T−1
∑T

t=1 v1,it, and v1,it is the idyosincratic component of x1,it defined by (3.5). We

note that the term
√
T v̄1,i ensures that the correlation of between β1,i and x̄1,i is different from

zero for all T , and as T → ∞. As shown in the first four columns of the table, the QMG estimator

offers the best finite sample performance in terms of bias and RMSE, although as to be expected,

the QMG estimator performs less well when we allow for non-zero correlation between slopes and

the regressors.

We now turn our attention to the estimators of λ(τ) and θ1(τ) = β1(τ)/(1− λ(τ)). The estimator

for θ1(τ) is defined as β̂1(τ)/(1 − λ̂(τ)) and is computed by plugging in the quantile estimates

corresponding to λ(τ) and β1(τ). We employ this method for both the DQR and QMG estimators.

Table 3.2 shows the bias and RMSE of the DQR and QMG estimators for the parameters of interest.

As before, the results indicate that the bias of the DQR estimator can be large, in particular for the

long run coefficient θ1. The QMG estimator offers nearly zero biases for large N and T . Overall, the

QMG estimator offers the best performance in terms of bias and RMSE in the class of estimators

for the dynamic quantile panel data models considered in this section.

We also investigate the relative performance of QMG in models with and without factor structure.

We use the same data generating process as in equations (3.1) - (3.7), but we generalize the

parametrization of equation (3.1) as follows:

yit = β0i + λiyit−1 + β1,ix1,it + β2,ix2,it + σγ

2∑
j=1

γj,ifj,t + κ0i(1 + κ1ix1,it)uit.

Naturally, when σγ = 0, the model does not include latent factors. When we set σγ = 1, we obtain

equation (3.1). We set σγ to take values in the interval [0, 1].

Figure 3.1 presents the bias and RMSE of the estimators for E(λi(τ)) and E(β1,i(τ)) when N = 100

and T = 200. Consistent again with expectations, when equation (3.1) does not include factors,

the DQR estimator offers the best finite sample performance. However, as shown in the figure, the

QMG performs reasonably well even when σγ = 0, and it offers the best performance in terms of

bias and RMSE when σγ is not too small (namely, when the latent factors are important).

4. Time-of-Use Pricing, Smart Technology and Energy Savings

In recent years electric utilities around the country have installed a vast number of smart meters

in homes and businesses. This new digital technology replaces the outdated electric meters used

in previous decades and allows two-way communication between devices inside the home and the
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Figure 3.1. Small sample performance of the DQR and QMG estimators in

models with (σγ ̸= 0) and without (σγ = 0) latent factors, as distinguished by

the parameter σγ.

utility. This has lead to a renewed interest in the roll-out of various Time-of-Use (TOU) electricity

pricing strategies1 since utilities now have the ability to communicate prices to the consumers in

real time. While economists have explored this topic in earlier decades, especially after the 1970s

1In addition to TOU rates a variety of dynamic pricing strategies are currently explored. See Harding

and Sexton (2017) for a comprehensive review of recent developments.
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energy crisis, the technology enabling customers to respond to these novel electric rates was largely

not available.

Technological advances referred to as “smart technologies” remove however the limitations of earlier

decades and can meaningfully allow customers to take advantage of time varying electric rates

to respond to peak demand prices or conserve electricity more broadly. Thus, it appears that

substantial peak load reductions can in fact be achieved from TOU pricing (Jessoe and Rapson

(2014), Ito (2014)). The literature however documents just how important the different types of

enabling technology are on consumer responsiveness. Harding and Lamarche (2016) estimate the

impact of TOU pricing using a randomized controlled trial of over 11 million observations on 15-

minute interval electricity consumption in the US and show that smart devices with automation

features achieve the highest peak demand savings and monetary incentives alone are not sufficient by

themselves to motivate consumers to respond to time varying prices in an economically significant

fashion.

In this section, we consider data from a similar randomized controlled trial, to study effectiveness

of three major enabling technologies (portal, in-home display and smart thermostat) within the

context of TOU pricing. By allowing for interactive effects in the quantile regressions, we also

take account of possible differences in unobserved common effects on households with differing

characteristics.

We apply our quantile regression approach to estimate an autoregressive panel quantile regression

model for energy consumption with interactive effects. We then compare the effect of different tech-

nologies on energy consumption, focusing on the distributional effects of these randomly assigned

technologies. We find that smart thermostats are particularly effective relative to other technologies

at enabling households to respond to TOU pricing. The differential effects are more pronounced at

the lower tail of the conditional distribution of energy consumption. While households appear to

reduce overall consumption as a result of these technologies relative to the control group, the aver-

age response fails to capture the distributional effects of the technologies across households. Since

utilities face a heterogenous customer base, understanding the distributional impact of the policies

has important regulatory consequences. Lastly, we investigate the long-run effect of a change in

energy price for different enabling technologies, focusing on the differential effects for different age

and income groups.
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4.1. Data

We employ data from a large scale randomized controlled trial (RCT) of TOU pricing for residential

electricity consumers in a South Central US state. The data used in this paper includes 779

customers who were randomly assigned to a time-of-use pricing structure and received three different

enabling technologies. All households had previously installed smart meters recording electricity

consumption at 15 minute intervals.2

The random allocation of a large sample of households into three treatment groups and one control

group, and the availability of electricity readings measured over 15-minute intervals make the appli-

cation of our QMG estimator particularly well suited to answer questions about the distributional

effect of enabling technologies.

The experiment was conducted during four months from June 1st to September 30th of 2011. After

households signed up for the program, they were randomly assigned into three different treatment

groups and a control group. Consumers randomized to the control group were informed they were

not eligible for the program at that time but might be allowed to join next year. These households

were kept on standard residential tariff and did not receive any enabling technology. On the other

hand, customers who were selected to the treatment groups were assigned a time-of-use pricing

rate which varied over two daily time periods. During the off-peak part of the day consisting of all

hours except 2pm to 7pm, the rate charged for electricity consumption was $0.042 kWh. During

the on-peak part of the day, which was the period from 2pm to 7pm, the rate charged was $0.23

kWh. Weekends were considered to be off-peak throughout.

Treated households were then further randomized by received additional enabling technologies.

All treated households had access to a website (“portal”) which exhibited information on their

electricity consumption and prices in real time. Our sample includes a group of 189 households

who were limited to the website as the only enabling technology.

The other households in the treatment group were randomly assigned to receive one of these two

additional enabling technologies: an in-home display (IHD) or a “smart” programmable com-

municating thermostat (PCT). An IHD is a small wireless tablet which displays information on

electricity usage and cost in real time and is typically placed in a highly visible place in the house,

e.g. kitchen. The PCT provides an interface that allows the customer to program and control the

2While many utilities consider data such as the one collected from this experiment to be proprietary,

similar data is publicly available. For example the CER data from Ireland is commonly used as a test data

set for the evaluation of a pricing experiment using high-frequency smart meter data.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le 21

Control Portal IHD PCT
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

Kilowatt-hours 0.61 0.51 0.62 0.52 0.59 0.48 0.59 0.48
Treatment 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35
High Income (> $75, 000) 0.38 0.49 0.58 0.49 0.51 0.50 0.49 0.50
Medium Income 0.31 0.46 0.22 0.41 0.31 0.46 0.28 0.45
Low Income (< $30, 000) 0.31 0.46 0.21 0.40 0.18 0.39 0.23 0.42
Mature (65 or older) 0.20 0.40 0.26 0.44 0.28 0.45 0.31 0.46
Family Life 0.49 0.50 0.42 0.49 0.45 0.50 0.37 0.48
Young (45 or younger) 0.31 0.46 0.32 0.47 0.27 0.44 0.33 0.47
Temperature (◦F) 84.88 12.85 84.85 12.85 84.89 12.85 84.95 12.85
Dew Point (◦F) 58.51 7.91 58.53 7.93 58.50 7.91 58.43 7.88
Number of households 242 189 152 196
Number of periods 8639 8639 8639 8639
Number of observations 2090638 1632771 1313128 1693244

Table 4.1. Descriptive Statistics for the Smart Meter Data. The control
group include households that have no access to the enabling technologies. Por-
tal means that the households have access to a website, IHD denotes in-home
display and PCT denotes “smart” programmable communicating thermostat.
Households in the IHD and PCT groups also had access to a website.

air conditioning system and respond to future and current price events. It also offers the same

price and consumption information as displayed on the IHD screen. While a group of 152 house-

holds received in-home displays, another group of 196 customers received “smart” programmable

communicating thermostats.

The large scale RCT has a high degree of compliance among treated participants. Only a small

proportion participants (less than 4%) were switched to alternative treatments, largely due to

problems installing the required technology. We restrict the sample to households who did not

change treatment status and whose electricity readings measured over 15-minute were consistently

recorded in the period between June and September. As shown in Table 4.1, we this leads to a

balanced panel of 6,729,781 observations with N = 779 and T = 8, 639. Since the majority of the

households had central AC, we focus only on these households in the analysis.

Only a limited number of observed covariates is available for the analysis. This is common in

this industry since utilities have very little information on the customers themselves. Demographic
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information was collected from the Nielsen’s PRIZM R⃝ segmentation system.3 and allows us to

partition our sample by life stages and income. In Table 4.1, “young years” is designed to capture

younger households, under 45 years of age with no children. The “family life” segment captures

middle aged families with children. Households were also clustered by income into three groups:

low, middle and high. The high group includes households with income above $75,000 and the

middle income group captures households with income between $30,000 and $75,000. These types

of customer segmentations are rather insufficient to capture treatment heterogeneity and further

highlight the attractiveness of econometric approaches such as the one proposed in this paper to

overcome data limitations.

Due to confidentiality reasons we don’t have access to exact address information for these house-

holds. We do however know the zip codes in which the households reside and are thus able to

further augment our sample with zip-code specific temperature and humidity data collected from

Weather Underground.

4.2. Model

Recall that each household was randomly assigned to either a treatment group or the control group.

Let g ∈ {0, 1, 2, 3} denote the groups, g = 0 denoting the control group, and g ∈ {1, 2, 3} denoting

households assigned to either Portal, IHD or PCT. Designate the households by i = 1, 2, . . . , Ng

and 15-minute intervals by t = 1, 2, . . . , T . Recall that only households with a continuous record of

electricity consumption over 96 (15 minutes) intervals per day and over roughly 90 days are included.

To explore the importance of heterogeneity of treatment effects, we consider the following dynamic

panel data model:

yigt = αig + λigyit−1 + δigdt(g) + x′
ig,tβig + f ′tγig + uigt, (4.1)

where yigt is the natural logarithm of electricity usage for household i in group g ∈ {0, 1, 2, 3}
during the 15-minute interval t, and the associated vector of weather measurements that includes

temperature and dew point, xig,t = (x1,ig,t, x2,ig,t, . . . , x1,ig,t−4, x2,ig,t−4)
′. We note that xig,t is

the same for all individuals in the same location, irrespective of their group assignment. But the

inclusion of fixed effects in the model allows assignment of the treatment to depend on location-

specific variables, xig,t. The variable dt(g) indicates the treatment assignment g and it takes the

value 1 if t is between 2 pm and 7 pm during weekdays, and 0 otherwise. Our quantile treatment

3PRIZM partitions the U.S. population into 66 types, or segments, aligned along two major dimensions,

life stages and income.
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coefficients are identified by the time variation associated with TOU pricing:

QYigt(τ |·) = αig(τ) + λig(τ)yit−1 + δig(τ)dt(g) + x′
ig,tβig,t(τ) + f ′tγig(τ), (4.2)

where QYigt(τ |·) is the τ -th conditional quantile function and δig(τ) is the quantile treatment effect

(QTE) of interest.

We estimate the model using our QMG estimator for each quantile τ and group g separately.

The estimator is implemented considering cross-sectional averages of the logarithm of electric-

ity usage, (ȳt, ȳt−1, . . . , ȳt−pT ), as well as cross-sectional averages of temperature and dew point,

(x̄1,t, . . . , x̄1,t−pT , x̄2,t, . . . , x̄2,t−pT ). Note that ȳt = N−1
∑

i,g yig,t, and x̄j,t = N−1
∑

i,g xj,ig,t, and

N =
∑3

g=0Ng. We follow the recommendations of the theory in Section 2 and set pT = 4, although

we offer evidence on the robustness of results in Section 4.4. We do not include controls for de-

mographics in the main results shown in the next section, but we explore heterogeneity of effects

among consumers with different observable characteristics (i.e., high vs. low income) in Section

4.5.

4.3. Main Empirical Results

Table 4.2 reports results for the coefficient λg(τ) = E(λig(τ)) and the QTE, δg(τ) = E(δig(τ)), for

the four groups: control group, portal, in-home display (IHD), and programmable communicating

thermostats (PCT). The last two columns present results obtained by using fixed effects (FE)

estimators which produces inconsistent results in dynamic heterogeneous panels, and the CCE

mean group (CCEMG) estimator as in Chudik and Pesaran (2015) that allows for heterogeneity

and interactive effects. The first five columns show the proposed quantile regression estimator,

labeled QMG.

It is important to note, that in absence of a rich set of covariates specific to the consumers, it

is important that the panel regressions contains unobserved effects that are different from time

dummies. For instance, homes can have different levels of insulation that lead to different electricity

usage when weather conditions experience sharp changes. We allow for consumer-specific common

effects by the availability of the data and the use of CCE type estimators.

The FE results tend to overestimate the effect of the lagged dependent variable and the treatment

effect, which is in line with the theoretical results obtained by Pesaran and Smith (1995) on the

inconsistency of the FE estimators for dynamic heterogenous panels even for N and T large panels

that we are considering here. Because these results are likely to be biased, we concentrate our
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QMG FE CCEMG
0.10 0.25 0.50 0.75 0.90

Control Group
Consumption at 0.464 0.573 0.616 0.477 0.353 0.623 0.474
t− 1 (in logs) (0.020) (0.021) (0.021) (0.020) (0.015) (0.001) (0.009)

Treatment 0.135 0.102 0.059 0.044 0.037 0.145 0.086
(2pm - 7pm) (0.009) (0.008) (0.006) (0.006) (0.006) (0.001) (0.020)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 242 242 242 242 242 242 242
N × T 2090638 2090638 2090638 2090638 2090638 2090638 2090638

Portal
Consumption at 0.468 0.586 0.628 0.484 0.360 0.622 0.487
t− 1 (in logs) (0.021) (0.023) (0.024) (0.022) (0.015) (0.001) (0.009)

Treatment 0.081 0.060 0.037 0.019 0.000 0.102 0.043
(2pm - 7pm) (0.012) (0.011) (0.009) (0.010) (0.013) (0.001) (0.019)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 189 189 189 189 189 189 189
N × T 1632771 1632771 1632771 1632771 1632771 1632771 1632771

IHD
Consumption at 0.469 0.578 0.612 0.473 0.352 0.627 0.478
t− 1 (in logs) (0.022) (0.025) (0.027) (0.025) (0.018) (0.001) (0.009)

Treatment 0.087 0.064 0.037 0.022 -0.004 0.089 0.040
(2pm - 7pm) (0.015) (0.012) (0.010) (0.008) (0.011) (0.002) (0.019)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 152 152 152 152 152 152 152
N × T 1313128 1313128 1313128 1313128 1313128 1313128 1313128

PCT
Consumption at 0.716 0.783 0.804 0.692 0.561 0.771 0.680
t− 1 (in logs) (0.024) (0.020) (0.019) (0.022) (0.021) (0.000) (0.007)

Treatment -0.081 -0.052 -0.027 -0.030 -0.037 -0.010 -0.067
(2pm - 7pm) (0.020) (0.015) (0.010) (0.010) (0.014) (0.001) (0.016)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 196 196 196 196 196 196 196
N × T 1693244 1693244 1693244 1693244 1693244 1693244 1693244

Table 4.2. Quantile Mean Group estimator results for the control group and
different technologies. FE denotes fixed effects and CCEMG denotes the Com-
mon Correlated Mean Group estimator due to Chudik and Pesaran (2015).
IHD denotes in-home display and PCT is programmable communicating ther-
mostats. Standard errors are in parentheses.
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attention on the CCEMG estimates. The positive and significant coefficient for the control group

indicates that consumption increases by 9.0% from 2 pm to 7 pm when temperature is likely to be

high.4 However, TOU pricing scheme seem to reduce energy consumption since the other treatment

effects are smaller than 0.086. The table shows, however, that the technology adopted by households

crucially determines whether the households engage in some saving behavior. The coefficient for

Portal and IHD are positive and significant, and they suggest a smaller (relative to the control

group) 4% increase in energy use (although the differences might not be statistically significantly

different from zero). However, the effect for the households using PCT are negative and significant

relative to the other groups. The estimates show that smart thermostats are particularly effective

in enabling consumers to respond to TOU pricing. Households provided with a PCT achieve a

reduction of 6.5% when energy prices are high.

Households response, however, is not homogeneous across the quantiles of the conditional distri-

bution of electricity consumption. Among consumers with a PCT technology, we find the largest

energy saving in the lower tail of the conditional distribution, while the effect of TOU pricing is

weakly significant at the upper conditional quantile. When we examine the distributional effect

across households with Portal and IHD technologies, we find a similar pattern. The QTE decreases

in absolute value as we go across quantiles, changing from a significant effect at the 0.1 quantile to

an effect not significantly different than zero at the 0.9 quantile. The effect of using PCT continues

to be negative at the lower tail, and the effect of IHD is positive, although smaller than the estimate

for the control group. This is an interesting finding that has policy implications as it suggests that

consumers react to the price changes, but the IHD is substantially less effective than the PCT in

terms of energy savings. This might explain why in spite of the huge initial popularity of IHD

technologies they have failed to be adopted at scale.

4.4. Robustness to Lagged Cross Section Averages

This section offers additional results by evaluating the sensitivity of the main coefficient estimates of

λig(τ) and δig(τ) to the number of lagged cross-section averages used to proxy the latent factors. Us-

ing Figure 4.1, we report results by varying the number of lagged cross-section averages of electricity

consumption, temperature, and drew point. The figure presents results by different quantiles and

treatment groups. The number of lagged cross-section averages included in the model varies from 0

to 10. For instance, pT = 0 means that we estimate model (4.2) by replacing ft with (ȳt, x̄1,t, x̄2,t),

4The mean maximum daily temperature was 99◦F and the median was 103◦F. The months of July and

August were very similar and September was substantially cooler with mean temperatures of 88.6◦F.
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Figure 4.1. Robustness to the number of lagged cross-section averages.

pT = 1 means that we estimate the model by replacing ft with (ȳt, x̄1,t, x̄2,t, ȳt−1, x̄1,t−1, x̄2,t−1), etc.

The vertical dotted line indicates the number of lagged cross-section averages considered in Table

4.2 (pT = 4).

The evidence illustrates that the results are robust to the number of lagged cross-section averages

used to proxy ft. In most cases, we find that the most significant changes in the estimates are
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obtained when pT is increased from 0 to a positive number, which is largely consistent with the

idea that the approximation of factors in dynamic settings relies heavily on lag values of cross-

sectional averages.

4.5. Responsiveness across Demographics

It is often important for policymakers to understand how the responsiveness to TOU pricing and

enabling technologies changes with household demographics. This section addresses this question

offering evidence on how consumers with different characteristics respond to TOU pricing. The

household characteristics are limited to age and income of the family.

We first turn our attention to estimating the QTE across different income levels. Table 4.3 is similar

to Table 4.2 although it shows separate results for high- and low-income families. As discussed

previously in Section 4.1, the high income group includes households with income above $75,000

and we combine the low and middle income groups to form a group of households with income

below $75,000. As expected, high income households in the control group consume more electricity

between 2 pm and 7 pm than low income households in the control group. The differential is fairly

constant across quantiles. It is very interesting to discover that the results for the other groups

are exactly the opposite: the coefficient estimates for high income consumers are smaller than

the coefficient estimates for low income consumers. This suggests that high income customers are

more successful in taking advantage of the existing information about price and consumption, and

consequently, engage in larger electricity savings. This may not be a pure behavioral effect and may

come from the fact that high income consumers have not only larger cooling systems but perhaps

also more sophisticated ones which can achieve higher savings. This is true for all quantiles and

groups. When we compare the evidence in Table 4.3 with the evidence presented in Table 4.2, we

find that the effect of PCT continues to be negative but it is now significant at the 0.9 quantile for

high income households and insignificant for low income households. Thus, high-income customers

who are conditionally consuming high levels of electricity reduce consumption by 5.1% relative to

other times of the day and by roughly 9.3% relative to the control group in the period 2 pm to 7

pm.

Lastly, we investigate how households at different life stages respond to TOU pricing and the

different technologies. In Table 4.4, the group called “family life” includes middle aged families

with children, while “other years” refers to younger households under 45 years of age and no

children and customers typically over 65 years of age. Again, as in the previous table, we see
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QMG CCEMG
0.10 0.25 0.50 0.75 0.90

Control Group
High Income Consumption at 0.468 0.580 0.621 0.490 0.367 0.482

t− 1 (in logs) (0.032) (0.035) (0.036) (0.034) (0.025) (0.009)
Treatment 0.143 0.118 0.069 0.054 0.042 0.097

(0.015) (0.013) (0.009) (0.008) (0.008) (0.017)
Low Income Consumption at 0.462 0.568 0.613 0.469 0.344 0.469

t− 1 (in logs) (0.025) (0.026) (0.026) (0.024) (0.018) (0.009)
Treatment 0.130 0.093 0.053 0.038 0.033 0.079

(0.012) (0.009) (0.007) (0.009) (0.008) (0.021)
Portal

High Income Consumption at 0.463 0.579 0.616 0.479 0.351 0.481
t− 1 (in logs) (0.029) (0.031) (0.033) (0.030) (0.020) (0.009)

Treatment 0.071 0.053 0.033 0.011 -0.010 0.033
(0.017) (0.017) (0.014) (0.017) (0.021) (0.019)

Low Income Consumption at 0.474 0.594 0.645 0.492 0.371 0.495
t− 1 (in logs) (0.030) (0.033) (0.035) (0.032) (0.024) (0.009)

Treatment 0.096 0.069 0.042 0.030 0.014 0.057
(0.020) (0.014) (0.011) (0.009) (0.011) (0.019)

IHD
High Income Consumption at 0.469 0.581 0.607 0.479 0.364 0.486

t− 1 (in logs) (0.032) (0.036) (0.038) (0.037) (0.025) (0.009)
Treatment 0.074 0.050 0.021 0.006 -0.026 0.018

(0.019) (0.019) (0.016) (0.014) (0.019) (0.022)
Low Income Consumption at 0.470 0.576 0.618 0.467 0.339 0.471

t− 1 (in logs) (0.031) (0.035) (0.038) (0.034) (0.027) (0.009)
Treatment 0.101 0.079 0.053 0.039 0.019 0.063

(0.022) (0.015) (0.011) (0.010) (0.011) (0.019)
PCT

High Income Consumption at 0.708 0.785 0.808 0.685 0.536 0.675
t− 1 (in logs) (0.033) (0.027) (0.024) (0.028) (0.026) (0.008)

Treatment -0.096 -0.064 -0.036 -0.042 -0.052 -0.080
(0.030) (0.023) (0.016) (0.017) (0.022) (0.015)

Low Income Consumption at 0.724 0.781 0.800 0.700 0.585 0.685
t− 1 (in logs) (0.036) (0.031) (0.029) (0.033) (0.032) (0.007)

Treatment -0.067 -0.041 -0.019 -0.017 -0.023 -0.055
(0.028) (0.021) (0.012) (0.011) (0.016) (0.016)

Table 4.3. Quantile Mean Group estimator results by Income Levels.
CCEMG denotes the Common Correlated Mean Group estimator due to
Chudik and Pesaran (2015). IHD denotes in-home display and PCT is pro-
grammable communicating thermostats. Standard errors are in parentheses.
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QMG CCEMG
0.10 0.25 0.50 0.75 0.90

Control Group
Family years Consumption at 0.492 0.616 0.663 0.513 0.369 0.505

t− 1 (in logs) (0.028) (0.029) (0.030) (0.028) (0.021) (0.009)
Treatment 0.146 0.107 0.059 0.047 0.032 0.091

(0.013) (0.010) (0.007) (0.007) (0.008) (0.018)
Young years Consumption at 0.438 0.531 0.571 0.442 0.337 0.444

t− 1 (in logs) (0.029) (0.029) (0.030) (0.027) (0.020) (0.009)
Treatment 0.124 0.098 0.060 0.042 0.041 0.081

(0.013) (0.011) (0.009) (0.010) (0.008) (0.021)
Portal

Family years Consumption at 0.470 0.599 0.651 0.505 0.363 0.500
t− 1 (in logs) (0.033) (0.035) (0.036) (0.034) (0.024) (0.009)

Treatment 0.093 0.071 0.047 0.035 0.023 0.056
(0.019) (0.015) (0.011) (0.012) (0.013) (0.018)

Young years Consumption at 0.465 0.576 0.612 0.470 0.357 0.477
t− 1 (in logs) (0.027) (0.030) (0.032) (0.029) (0.020) (0.009)

Treatment 0.073 0.052 0.030 0.008 -0.016 0.034
(0.016) (0.016) (0.014) (0.016) (0.020) (0.020)

IHD
Family years Consumption at 0.507 0.644 0.693 0.538 0.384 0.534

t− 1 (in logs) (0.029) (0.030) (0.031) (0.032) (0.025) (0.009)
Treatment 0.068 0.049 0.026 0.012 -0.008 0.027

(0.023) (0.018) (0.012) (0.010) (0.016) (0.018)
Young years Consumption at 0.439 0.525 0.547 0.420 0.326 0.433

t− 1 (in logs) (0.032) (0.037) (0.040) (0.037) (0.026) (0.009)
Treatment 0.103 0.077 0.046 0.030 0.000 0.051

(0.021) (0.016) (0.014) (0.013) (0.015) (0.020)
PCT

Family years Consumption at 0.718 0.778 0.799 0.688 0.558 0.678
t− 1 (in logs) (0.037) (0.030) (0.026) (0.032) (0.032) (0.008)

Treatment -0.072 -0.045 -0.020 -0.020 -0.012 -0.052
(0.033) (0.024) (0.014) (0.016) (0.022) (0.015)

Young years Consumption at 0.715 0.786 0.807 0.695 0.563 0.682
t− 1 (in logs) (0.032) (0.029) (0.027) (0.030) (0.028) (0.007)

Treatment -0.087 -0.057 -0.032 -0.035 -0.052 -0.076
(0.025) (0.020) (0.013) (0.013) (0.018) (0.016)

Table 4.4. Quantile Mean Group estimator results by Family Stages.
CCEMG denotes the CCEMG denotes the Common Correlated Mean Group
estimator due to Chudik and Pesaran (2015). IHD denotes in-home display
and PCT is programmable communicating thermostats. Standard errors are in
parentheses.
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considerable response heterogeneity by group demographics. For instance, we find larger energy

savings among families with no children who were provided a PCT, with the gains ranging from

3.1% at the 0.5 quantile to 8.3% at the 0.10 quantile. However, PCT does not seem to be an

effective technology for middle aged families at the upper quantiles of the conditional distribution

of electricity consumption.

4.6. A Counterfactual Exercise

In practice, regulators and electric utility managers must balance several concerns when implement-

ing dynamic pricing strategies. Considerations range from the peak price level, the variability of

prices over the course of the day, and the determination of days when the utility ought to increase

prices to critical peak levels (often several times the baseline off-peak price) in order to prevent

blackouts. These decisions are complex and it is important to base their conclusions on sound data

driven counterfactual simulations.

Models such as the one developed in this paper can play an important role in evaluating relevant

counterfactuals and allowing decision makers to choose optimal data driven strategies. While it is

beyond the scope of our paper to provide an in-depth exploration of the menu of strategies available

to a utility, we will briefly exemplify the process by evaluating a scenario where the utility decides

to execute the peak pricing option only if temperature exceeds a certain threshold. This is usually

coupled with further prediction models which may indicate that on days where the temperature is

high the risk of a blackout also increases substantially. Thus, while utilities have to avoid this very

costly scenario, they also have to balance their responsibilities towards their consumers. Daily peak

prices may avoid blackouts, but will also cost consumers extra money and can lead to unhappy

customers, when the rationale for higher prices is decoupled from the risk of a blackout. Many

utilities have in fact opted to employ similar strategies in recent years which are commonly labeled

as “variable peak pricing”rates.

Using our model, we can explore a series of counterfactuals. We create a decision rule that deviated

from the actual policy, by only switching on the counterfactual policy if temperature exceeds a

certain threshold defined as percentiles of the temperature distribution. In this simplified example,

we consider actual temperature, though in the real world this strategy would be implemented

using a secondary prediction algorithms for the temperature a few days ahead. Thus, we contrast

counterfactual policies which are turned on if the temperature exceeds the 90th, 50th, and 25th

percentiles, respectively. To understand the rationale, we can imagine that reasoning behind turning
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Figure 4.2. Counterfactual policies for customers with a PCT. The right

panels show the percentage change in electricity usage with respect to the actual

policy.

on the peak prices if temperature exceeds the 90th percentile is a way of explaining to consumers

that they will be subjected to higher prices only on very hot days where the risk of a blackout is

significantly greater than on a regular day.
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For simplicity, we compare the baseline policy and counterfactual policies for customers with a PCT

and investigate the response heterogeneity by considering households at both the top 90th quantile

and bottom 10th quantile of the conditional usage distribution (Figure 4.2). Since in practice it

is often required to display results in terms of kWh load curves over the course of the day we do

so in the figures below for each policy while also reporting the percent change in electricity usage

relative to the actual baseline policy.

We see that the counterfactual policies reduce savings during the peak hours as a function of the

threshold at which they are implemented. The reductions are, however, relatively minor indicating

that there may be a gain in efficiency from targeting only the hottest days (which is consistent with

current practice by many utilities). Less strict counterfactuals also result in lower levels of off-peak

load shifting during the evening and night hours.

5. Conclusions

In this paper, we extend the Common Correlated Effects (CCE) approach of Pesaran (2006) and

Chudik and Pesaran (2015) to the estimation and inference of dynamic panel quantile regression

models with interactive effects. We propose a new quantile estimator and show that it is consistent

and asymptotically normal under standard regularity conditions in the quantile and dynamic linear

panel literatures. We require, however, a larger T/N for inference as compared to the standard

CCEMG estimators developed for linear panel data models. An important condition is that the

individual models need to be augmented by a sufficiently large number of lagged cross section

averages that proxy the unobserved common effects. We also show that the approach offers good

finite sample performance in the class of dynamic quantile regression estimators, as long as the time

series dimension of the panel is large. Lastly, we demonstrate how the approach can be used in

practice by documenting how the use of different technologies that allow consumers to be informed

about electricity prices and consumption are associated with energy savings. Using data from a

large scale randomized experiment that contains more than 6 million observations, we semipara-

metrically estimate a dynamic equation for electricity consumption with slope heterogeneity and

cross-sectional dependence. The results offer several new insights useful for policy, while illustrating

that the average effect does not summarize the distributional effect of the technologies.

Several directions remain to be investigated. Inference procedures are proposed but they require

a detailed investigation in the case of long run effects. Moreover, although T is relatively large

in our empirical application, offering an estimation approach that helps to reduce potential biases
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in short T applications seems of fundamental importance. A bias-corrected mean quantile group

estimator is being investigated for the case of heterogeneous quantile coefficients following closely

the approach developed in Chudik and Pesaran (2015).
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