
Effective graphs with
Microsoft R Open
Naomi B. Robbins and Joyce Robbins
March 2016

DATA TREATMENT WHITE PAPER

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 2

Contents
1	 Introduction	 4

1.1	 Why visualize data?	 4

1.2	 Why use R?	 5

1.3	 Why use Microsoft R Open?	 5

1.4	 How do I start using Microsoft R Open?	 6

1.5	 Which graphics package should I use?	 6

1.6	 How should I size and save my graphs?	 7

1.7 	 What is an effective graph?	 8

2	 Direct comparisons	 9

2.1	 Bar charts (base)	 9

2.2	 Dot plots (base)	 11

3	 Distributions	 13

3.1	 Histograms (base)	 13

3.2	 Box plots (base)	 15

4	 Trends over time	 16

4.1	 Line charts (base)	 16

4.2	 Month plots (base)	 18

5	 Relationships	 19

5.1	 Scatterplots (base)	 19

5.2	 Scatterplot matrices (lattice)	 22

5.3	 Parallel coordinate plots (MASS)	 24

6	� Percents… or parts of a whole	 27

6.1	 Pie charts (base)	 27

6.2	 Bar percent charts (base)	 28

6.3	 Multiple pie charts (base)	 30

6.4	 Divided bar charts (base)	 31

6.5	 Grouped bar charts (base)	 33

6.6	 Faceted bar charts (ggplot2)	 34

7	 Special cases	 39

7.1	 Diverging stacked bar charts (HH)	 39

7.2	 Linked micromaps (micromapST)	 42

8	 Conclusion	 44

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 3

Appendices	 45

A	 Data and sources	 45

A.1	 countries2012.csv	 45

A.2	 fathers.txt	 45

A.3	 living.csv	 46

A.4	 acs2014.csv	 46

B	 Base graphics cheat sheet	 47

References	 49

Index		 50

About the authors	 52

Acknowledgments	 52

Download site

A Github site, https://www.github.com/nbrgraphs/mro, is available for downloading an electronic version
of this document, individual code scripts for the graphs here, and additional code scripts for ggplot2
versions of many of the graphs.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 4

1	 INTRODUCTION
1.1	 Why visualize data?
Graphs help us understand data in a way that simply cannot be matched with numbers and calculations
alone. It’s hard to find a data set that makes this case better than the one devised by Frank Anscombe to
illustrate the power of visual representation. This set is one of R’s many built-in data sets. It consists of 88
observations: four groups of eleven (x,y) pairs.

Summary statistics suggest that the groups are quite similar:

Property (by group) Value

Mean of x 9 (exact)

Variance of x 11 (exact)

Mean of y 7.50 (to 2 decimal places)

Variance of y 4.122 or 4.127 (to 3 decimal places)

Correlation between x and y 0.816 (to 3 decimal places)

Linear regression line y = 3.00 + 0.500x
(to 2 and 3 decimal places, respectively)

But if we graph the data, the results are striking:

Instantly, each group appears distinct and unique, each clearly reflecting a different empirical reality. It was
surely “Aha!” moments like this that led statistician and data visualization expert John Tukey to claim that
his favorite part of analytics was “taking boring flat data and bringing it to life through visualization.”

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 5

1.2	 Why use R?
With computers we have the power to visualize data in ways that were unimaginable with only pencil
and paper. A great variety of software packages and programming languages offer the tools for drawing
graphs. A bit of history demonstrates why R is so well-suited to the task. A dialect of the S language, R was
developed by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand, in the 1990s
as an open source alternative to S-PLUS, the commercial version of S available at the time. The original S
language was developed in the Statistical Research Department of Bell Laboratories, the same department
in which William Cleveland and his colleagues studied how perception influences our ability to decode
information from graphs. Thanks to fruitful interaction between these projects, many graphing defaults
in S were influenced by Cleveland’s research and passed along to R. For this reason, it stands out among
software options for drawing effective graphs.

R consists of a base language and user-contributed packages—of which more than 8,000 are currently
available in the CRAN repository alone—that provide great depth and flexibility to the language. Packages
can be conveniently explored on the Microsoft R Portal.1 There are R packages for most statistical
methods and new ones are regularly added. All of the code is publicly available, so users can tweak it to
their requirements and are not forced to accept preprogrammed options. This makes R very adaptable
and extensible. Since R is a language rather than a program, what you can do is limited only by your
imagination.

Furthermore, R users have formed an active and helpful community on- and offline, which is a great
resource for beginning and experienced programmers alike. User groups, blogs, R-Help, and Stack
Overflow are a few of the ways R users share knowledge and offer guidance. Package developers often
respond directly to user questions and feedback, so the development of R is a collaborative effort. While
many statistical and graphics software packages are very expensive, R is open source.

1.3	 Why use Microsoft R Open?
With all these benefits, R still has some drawbacks. The downside to having so many package authors is a
lack of coordination. Many packages depend on others and a change or update in one package may have
a ripple effect, causing errors or faulty output. This can make it difficult to share code, or even rerun one’s
own code at a later date. Another problem is that R can’t take advantage of parallel processing power.

Microsoft R Open (MRO), formerly Revolution R Open, was designed by Revolution Analytics to tackle
these issues. MRO is an enhanced R distribution that standardizes the package landscape by fixing it
in a particular point in time. Standardization provides consistency when installing packages, as all are
downloaded from the same CRAN repository snapshot, allowing reproducibility over time and among
users. It’s a great relief to be able to reuse or share code without worrying about the compatibility of R
packages. Reproducibility is further enhanced in MRO with the checkpoint package, which allows users
to run R as it existed at a prior date. MRO is free and open source. It runs on Windows, Linux, and Mac
systems.

1 https://mran.microsoft.com/packages

https://mran.microsoft.com/packages

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 6

To take advantage of the speed of multicore processors, MRO provides optional multithreaded math
libraries. With these libraries, R makes use of all of the processing power available, so computation times
are significantly reduced. You don’t need to change any code to benefit from the speed enhancements.
Finally, MRO works well with RStudio; if MRO is installed, RStudio will automatically find it and use it as the
R engine. Installing MRO doesn’t change the way you interact with R at all. In fact, the only difference you’ll
notice is the Microsoft R Open message that appears after restarting R, indicating the version number and
date of the default CRAN mirror snapshot.

1.4	 How do I start using Microsoft R Open?
The first step is to download Microsoft R Open.2 We assume that the reader has a basic familiarity with
the R language, but beginning R users can type in the examples here and run them without any prior
knowledge. This text focuses on graphical functions; for a general introduction to R, the Microsoft R Portal
provides a great list of resources for getting started.3 For data visualization, you must understand how
to work with data frames, vectors, and matrices, and master the factor class. Access R help by entering
a question mark before any R command or function in the console, for example: ?barplot. Online R
resources abound and Stack Overflow4 has become the go-to source for answers to R questions.

1.5	 Which graphics package should I use?
Should you use the graphics package that comes with the R distribution (which we’ll refer to as “base
graphics”), or an alternative graphics package? Packages such as ggplot2 and lattice are built on grid
graphics, completely independent of the base graphics system. Therefore, you don’t need to know base
graphics to learn one of these grid-based packages. Starting with base graphics, however, is worthwhile,
as it will always be useful even if you end up doing most of your work with another package. For example,
while ggplot2 is quite powerful, it requires data to be in a data frame in a particular form. So for a quick
plot of a vector, we are more likely to turn to base graphics and use functions like plot(), barplot(),
hist(), etc. Base graphics is also better for drawing highly specialized plots that combine a variety of
different elements. We struggled with which to include here as both are popular choices, and decided to
use base graphics in the main examples, but provide ggplot2 code on Github for most of the plots.5 If
you’re learning ggplot2, you may want to try replicating the plots on your own before looking at our code.

While the majority of the graphs here are drawn with base graphics, we also include some examples from
ggplot2, lattice, HH, MASS, and micromapST. The learning curve for new packages varies widely. While
ggplot2 offers a new vocabulary and tools for constructing plots from the ground up, many packages are
collections of scripts that produce complex plots with minimal effort. By experimenting with functions from
a variety of packages, you will quickly expand your repertoire of graphs. At the same time, it’s important to
note that packages vary in their adherence to principles of good design. We encourage you not to assume
that plot defaults are your best choice, and override them as necessary to improve your graphs.

2 https://mran.microsoft.com/download/
3 https://mran.microsoft.com/documents/getting-started/
4 http://stackoverflow.com/questions/tagged/r
5 https://github.com/nbrgraphs/mro

https://mran.microsoft.com/download/
https://mran.microsoft.com/documents/getting-started/
http://stackoverflow.com/questions/tagged/r
https://github.com/nbrgraphs/mro
http://stackoverflow.com/questions/tagged/r

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 7

1.6	 How should I size and save my graphs?
If no graphics device is specified, the default in R is to send the graphics to the on-screen device, “the plot
window.” So when you type a graphics command into the console, such as plot(1:10, 1:10), you see it
right away. The downside is that this on-screen device varies from system to system, and your images will
not transfer well. While it’s fine for experimentation purposes to use the plot window, once you start caring
about specific dimensions and sizes, you’ll need another option. You have two choices. One is to call a
device driver, with a command such as bmp(), jpg(), pdf(), png(), or tiff(), and turn it off after the plot
is complete:

pdf(“savedplot.pdf”, width = 7, height = 5)
plot(1:10, 1:10)
dev.off()

For more on getting your plots to look good with this method, see David Smith’s “10 tips for making your
R graphics look their best.”6

A second route is to use Yihui Xie’s knitr package7 to simultaneously create text and plots, and combine
them in an output document, as we did to create this publication. We won’t go into detail about knitr here,
but we have posted the .Rnw document containing all of our code and text on Github.8

Since sizing instructions are contained in the chunk options with knitr and not in the code itself, and since
this is important information, we have made the figure height and width settings visible at the top of our
code sections so you can reproduce our plot sizes, no matter what system you use to create your plots. For
example, a line like this:

#+ fig.width = 6, fig.height = 3.5

indicates that we set the figure width to 6 inches and the figure height to 3.5 inches. You can replicate this
in many different ways, depending on your workflow and image type preferences:

pdf(“mypdf.pdf”, width = 6, height = 3.5)		 #pdf

png(�“mypng.png”, width = 6, height = 3.5,		 #png

units = ”in”, res = 72)

 ‘‘‘{r myplot, fig.width = 6, fig.height = 3.5} 	 #R Markdown

Of course, the plots will not be identical in different image types, and you’ll need to experiment to get the
results you want. Use our figure sizes as a starting point.

6 �http://blog.revolutionanalytics.com/2009/01/10-tips-for-making-your-r-graphics-look-their-best.html
7 http://yihui.name/knitr/
8 https://github.com/nbrgraphs/mro

http://blog.revolutionanalytics.com/2009/01/10-tips-for-making-your-r-graphics-look-their-best.html
http://blog.revolutionanalytics.com/2009/01/10-tips-for-making-your-r-graphics-look-their-best.html
http://yihui.name/knitr/
https://github.com/nbrgraphs/mro

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 8

1.7 	 What is an effective graph?
Different authors assign different meanings to the term “effective graph.” To some, a graph is effective if
it attracts attention. As data analysts, however, we are more concerned with comprehension and clarity
than bells and whistles. We call one graph more effective than another if most readers can decode its
information more quickly or more accurately. More often than not, fancier and more complex is less
effective. Edward Tufte’s The Visual Display of Quantitative Information and William Cleveland’s The
Elements of Graphing Data remain the classics for understanding what it takes for a graph to be effective
and are must-reads for data visualization professionals. For an introduction to the subject with a focus on
putting principles into action, see Creating More Effective Graphs by Naomi B. Robbins.

In a nutshell, it’s crucial that your chart type and design elements are compatible with your data type, your
message, and your audience. Many software packages offer “chart choosers” to help select an appropriate
chart. It would be convenient if these worked, but unfortunately they often don’t. Each data set is unique,
and what works for one may not work for another, even one that’s the same size and shape and contains
the same type of variables. The best graph depends on which aspect of your data you wish to emphasize.

Experimenting with different chart types and options will lead to a deeper understanding of your data set
and help you select the graphics type best suited to your purposes. Naomi’s Forbes blog post “Thinking
Outside the Chart Menu”9 describes how understanding the meaning of the data set led to an innovative
use of diverging stacked bar charts (discussed in section 7.1). This chart type was coded by Richard
Heiberger and added as the likert() function to the HH package—a testament to the creativity and
flexibility of the R user community.

Finally, we reject the idea that data visualization as part of exploratory data analysis (EDA) is very different
from data visualization for presentation. To be sure, details like font size are not part of EDA. However, the
graphical forms that spark insights for you will in general be the same ones you’ll want to share with others.

9 http://www.forbes.com/sites/naomirobbins/2011/11/29/thinking-outside-the-chart-menu/

http://www.forbes.com/sites/naomirobbins/2011/11/29/thinking-outside-the-chart-menu/
http://www.forbes.com/sites/naomirobbins/2011/11/29/thinking-outside-the-chart-menu/

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 9

2	 DIRECT COMPARISONS
2.1	 Bar charts (base)
Bar charts are a common and effective means to show direct comparisons for small data sets. With base
graphics, bar charts are drawn with the barplot() function, which takes a numeric vector of lengths as
the main argument. For a very simple bar chart, try barplot(1:5). In this example we wish to compare the
total fertility rate (measured in average total births per woman) of countries in Central America:

#+ fig.width = 7, fig.height = 4

TFR <- c(2.6, 1.9, 2.0, 3.3, 2.5, 2.3, 2.5)
names(TFR) <- �c (“Belize”, “Costa Rica”, “El Salvador”, “Guatemala”,

”Honduras”, “Nicaragua”, “Panama”)
TFR <- sort(TFR)
par(mar = c(5,8,4,2))
barplot (�TFR, horiz = TRUE,

col = “lightblue”,
border = “lightblue”,
main = “Central America, Fertility Rate 2012”,
xlab = “average births per woman”,
xlim = c(0,4),
cex.lab = 1.4,
cex.main = 1.7,
cex.names = 1.4,
las = 1)

abline(v = 1:4, col = “grey90”)

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 10

Here TFR is a vector of fertility rates. We use names() to assign country names to each vector element
since barplot() automatically uses these names to label the bars. While barplot(TFR) is all that is
needed to produce a simple bar chart, we make several adjustments to make the chart easier to interpret.
Unless there is an order to the data that shouldn’t be altered, the bars should be organized in length order.
Therefore, before plotting, we sort the data in numerical order.

For accurate perception, bars must start at 0. This may be the default; if it is, don’t change it!

We generally prefer horizontal bars (horiz = TRUE) since the eye more readily perceives differences
in length of bars stacked on top of each other rather than next to each other. In addition, a horizontal bar
chart provides more space for the relatively long country names, avoiding the problem of crowded, vertical
names on the x-axis. We change the orientation of the axis labels to horizontal with (las=1).

Changing the plot margins with par(mar=c(5,8,4,2)) makes space for the country labels. These four
numbers refer to the bottom, left, top, and right plot margins, respectively. The defaults are 5.1, 4.1, 4.1,
and 2.1, measured in lines of text from the edge of the plot region. (See Murrell (2011), Ch. 3, for a thorough
discussion of plotting regions.) Trial and error determines that a left margin of 8 produces enough space.

Next we set the x-axis limits with xlim=c(0,4). The defaults in base R may produce axes that don’t include
all the data, which is not ideal. The bar perimeter color is controlled with (border=) and the fill color with
(col=). We use the same color for both since the default black borders are distracting.

The cex.lab, cex.main, and cex.names parameters enlarge the text of the bar labels, axis labels,
and title, respectively. The setting (1.4 or 1.7 in this case) represents the number of times larger (or
smaller) to make the text relative to the default size. In general, we prefer font sizes that are large but not
overpowering. The title size (cex.main) should be larger than the axis label (cex.lab) and bar label
(cex.names) sizes, which in turn should be larger than the tick mark label size (cex.axis). (Since we
wished to keep the default of 1, we did not set cex.axis in this example.)

Gridlines help the reader estimate the value of the data but should be minimal and subtle. In this case,
only vertical gridlines are necessary. We add gridlines with the abline() function: vertical lines are
drawn with (v=) and horizontal ones with (h=). Using the colon (:) to generate integer sequences in R,
abline(v=1:4) draws vertical lines at x = 1, x = 2, x = 3, and x = 4. Note that abline() can only
be called to add lines to an existing plot. We set the color of the lines to a very light grey—”grey90”—so
the lines won’t interfere with the data, the main attraction. Colors can be set in many ways. Using the
657 named colors10 is convenient since it makes the code easier to read. A list of color names can be
obtained by typing colors() in the console.

Finally, we wish to make the bars narrower as thick bars take up space without adding any information.
Narrow bars are also more pleasing to the eye. While barplot() takes a (width=) argument, it only
works if (xlim=), or (ylim=) for a horizontal bar chart, is adjusted. Even then, you must make other
adjustments to keep the plot proportional. Therefore, we prefer to adjust the bar width by changing the
figure height. The method will change depending on the graphics device you use. With knitr, we add
fig.width=7 and fig.height=4 to the chunk options (see section 1.6 for more on sizing graphics).

10 http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.pdf

http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.pdf

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 11

2.2	 Dot plots (base)
Bars get cluttered quickly. It’s hard to give an exact number, but if the graph is looking crowded, consider
switching to a Cleveland dot plot. It can accommodate many more data points and is a better choice for
log scales and showing error bars. Unlike bar charts, the axis scale does not need to start at zero, since we
are judging position rather than length. Here we show the total fertility rate for a larger sample of countries
(see Appendix A.1 for the data and source). The sample is subsetted from the full data set with index <-
seq(from=1, to=179, by=4), which creates an index of every fourth value beginning at 1. If the paper
size were larger or this list appeared online, we could use the full data set in a dot plot.

Despite the advantages of the dot plot, it’s rare to find it as a built-in option in data visualization software
packages. R base graphics, however, does have a function, dotchart(), for this purpose. One simple
adjustment to the defaults for a single series is to set the plotting symbol to a filled, rather than an open,
circle with (pch=16). When plotting multiple series, however, if symbols overlap, the default open circles
should be used.

We prefer right-justified labels and solid gridlines to the default dotted ones produced by dotchart().
Neither the line type nor the justification is a parameter that can be passed to this plot type. However,
in R, it’s easy to make changes quickly to built-in functions—a feature we really like. In this case, type
dotchart—without the parens—into the console to see the function code. Without delving deep into
the code, you’ll see two abline() calls that include (lty=”dotted”). Copy the code into an R script,

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 12

change the lty settings to “solid”, and change the (adj=0) setting to (adj=adj) in the text() call
that plots the labels, so the desired justification setting can be passed to the dot plot function: (adj=1)
for right justification. To save the function for future use, it’s best to change the name. Ours is called
dotchartsolid(). It’s saved in a file called “dotchartsolid.R” and is available on Github.11

Annotating plots with relevant information can boost the reader’s ability to interpret the data. In this
case, a total fertility rate of “2” is a benchmark, since it represents the rate needed to replace the current
population size through childbirth. Adding a line indicating this benchmark, as we have done in red
with abline(), helps us readily identify which countries have total fertility rates above and below the
replacement rate.

#+ fig.width = 7, fig.height = 8

source(“dotchartsolid.R”)
data <- read.csv(“data/countries2012.csv”)
index <- seq(from = 1, to = 179, by = 4)
sample <- data$TFR[index]
names(sample) <- data$COUNTRY[index]
sample <- sample[order(sample)]
par(mar = c(5, 10, 4, 2))
dotchartsolid(�sample, cex = .8, pch = 16, xlim = c(1,7),

main = “Total Fertility Rate by Country”,
xlab = “average births per woman”,
adj = 1, cex.main = 2,cex.lab = 1.5)

abline (v = 2, col = “red”)
text (�2, 12.5, “replacement rate”, cex = .7, pos = 4,

col = “red”)

11 https://github.com/nbrgraphs/mro

https://github.com/nbrgraphs/mro

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 13

3	 DISTRIBUTIONS
Often we are interested in how a variable is distributed. Is it symmetric or skewed? Is it multimodal or not?
How spread out is it? In these cases we need a method for viewing the full distribution of the data. For
a single data set, a histogram is a good tool for the job, and it’s easy to create one in R. To compare the
distributions of several data sets or groups within one set, boxplots are a great choice.

3.1	 Histograms (base)
Each rectangle in a histogram is called a bin; it “holds” the number or percent of data points indicated
on the y-axis. Be careful: although they look somewhat similar, a histogram is not a bar chart. For more
details on the difference, see Naomi’s blog post on the topic.12 The number of bins can greatly affect the
appearance of the histogram. As Aaron Schumacher points out13, the process used to determine the bin size
in R is complex and not always optimal. There are several ways to use the (breaks=) parameter to set your
own bin breakpoints. You can input an integer for the number of bins, but it will be adjusted according to
a pretty value, i.e., one that is 1, 2, or 5 times a power of 10. Tightest control of the bin limits is obtained by
setting (breaks=) to a vector of positions such as: seq(from=0, to=1000, by=50). We recommend
trying different bin sizes. If an inconsistency appears, investigate further to determine its cause.

In this example we use the full country list (n = 179) of total fertility rate data discussed in the previous
section:

#+ fig.width = 7, fig.height = 5

12 http://www.forbes.com/sites/naomirobbins/2012/01/04/a-histogram-is-not-a-bar-chart/
13 http://planspace.org/20141225-how_does_r_calculate_histogram_break_points/

http://www.forbes.com/sites/naomirobbins/2012/01/04/a-histogram-is-not-a-bar-chart/
http://planspace.org/20141225-how_does_r_calculate_histogram_break_points/

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 14

x <- read.csv(“data/countries2012.csv”)
hist(x�$TFR, breaks = seq(from = 1, to = 8), col = “lightblue”,

main = “Fertility Rate by Country”,
xlab = “average births per woman”,
xlim = c(1,8), ylim = c(0,80),
cex.main = 1.7, cex.lab = 1.4, las = 1)

We can clearly see from the histogram that the most common total fertility rate is between 1 and 2, and the
distribution skews right. Dividing the bins in half with breaks=seq(from=1, to=8, by=.5) provides
more detail:

#+ fig.width = 7, fig.height = 5

x <- read.csv(“data/countries2012.csv”)
hist(�x$TFR, breaks = seq(from = 1, to = 8, by = .5),

col = “lightblue”,
main = “Fertility Rate by Country”,
xlab = “average births per woman”,
xlim = c(1,8), ylim = c(0,50),
cex.main = 1.7, cex.lab = 1.4, las = 1)

Again, we recommend caution when changing the bin size. Not all choices represent the data well.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 15

3.2	 Box plots (base)
Box plots are far superior to histograms for displaying more than one distribution. Here we compare the
distributions of total fertility rate by continent. We can clearly see that Africa not only has the highest
median total fertility rate, but also the greatest range of rates. The opposite is the case for Europe.

#+ fig.width = 7, fig.height = 4.5

par(mar = c(5,9,4,2))
data <- read.csv(“data/countries2012.csv”)
data$CONTINENT <- reorder(data$CONTINENT, data$TFR, median)
boxplot(�TFR ~ CONTINENT, data, horizontal = TRUE,

ylim = c(1,8),
col = “lightblue”,
main = “Fertility Rate Distributions by Continent”,
xlab = “average births per woman”, cex.main = 1.7,
cex.lab = 1.4, cex.axis = 1.4, las = 1)

abline (v = 1:8, col = “grey95”)
abline (v = 2, col = “red”)
text (�x = 2, y = .5, “<- replacement rate”, col = “red”,

pos = 4)

Passing the function TFR~CONTINENT as the first argument to boxplot() indicates how the full
distribution of total fertility rates should be grouped. As we’ve seen previously, graphs are easier to
decipher if the graphical elements are ordered by size. Since boxplot() plots the data in order of the
factors, we sort the continent factor levels by median group total fertility rate with the reorder()
function.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 16

4	 TRENDS OVER TIME
4.1	 Line charts (base)
The use of line charts to depict trends over time is a tried-and-true method. There is evidence from the 10th
or 11th century of a line chart showing planetary movements plotted against time.14 Unlike bar charts, line
charts do not need to have a zero baseline. However, the most common mistake we see with line charts is
using evenly spaced tick marks to represent different amounts of time.

The simplest way to create a line chart in R is to use (type=”l”) with the versatile plot() function.15 Here
we show the population of the U.S. from 2005–2015:

#+ fig.width = 7, fig.height = 4.5

df <- data.frame (�year = seq(2005,2015),
pop = c(296, 298, 301, 304, 307, 308,
311, 313, 315, 318, 320))

plot(�df$year, df$pop, type = “l”,
main = “U.S. Population, 2005 - 2015”, xlab = “”,

ylab = “millions of people”, las = 1,
cex.axis = 1.2, , cex.lab = 1.4, cex.main = 1.7)

14 http://visage.co/data-visualization-101-line-charts/
15 �To see how versatile plot() really is, try each of the following: plot(ChickWeight), plot(AirPassengers),
plot(BOD), plot(HairEyeColor)

http://visage.co/data-visualization-101-line-charts/

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 17

Time-series objects, such as the built-in data set UKDriverDeaths, are simple to plot in R. This plot
requires only one line of code.

#+ fig.width = 5, fig.height = 5

plot(�UKDriverDeaths,
main = “UK Road Casualities 1969-1984”,
ylab = “monthly driver deaths”, xlab = “”, las = 1,
cex.main = 1.4, cex.lab = 1.2, cex.axis = 1.2)

To convert a data set to a time-series object, we use the ts() function. For example:

data <- ts(data, start = c(2010,7), frequency = 12)

Time-series are particularly convenient for monthly (frequency=12) or quarterly (frequency=4) data.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 18

4.2	 Month plots (base)
A nice R feature for time-series is the monthplot() function, which groups the time-series data by month
and plots it as 12 separate line charts on the same set of axes:

#+ fig.width = 8.5, fig.height = 4.5

par(mar = c(5,6,2,2))
monthplot(�UKDriverDeaths,

main = ”UK Road Casualities 1969-1984”,
labels = month.abb, las = 1, ylab = ””,
cex.axis = 1.2, cex.main = 1.4)

mtext(“driver deaths”, side = 2, line = 4, cex = 1.3)

In the month plot, it’s easy to see both the trend of decreasing deaths over time and a pattern of increased
deaths in the last several months of the year. We set (labels=month.abb) since the built-in month
abbreviations are clearer than the monthplot() default of single letters to represent the months. Month
plots are also called cycle plots.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 19

5	 RELATIONSHIPS
5.1	 Scatterplots (base)
A scatterplot is a great tool for showing the relationship between two sets of data. Suppose, for example,
we are investigating whether there’s a correlation between gross domestic product (GDP) and total fertility
rate (TFR). In base graphics either plot(x,y) or  plot(y~x) will plot the data on a coordinate system. Since
some of the data points overlap, we use open circles (the default) for clarity. We divide GDP by 1000 to
avoid either scientific notation or long strings of 0’s on the x-axis, both of which may confuse readers. Of
course, we must add “1000s” to the x-axis label for an accurate unit label.

#+ fig.width = 5, fig.height = 5

data <- read.csv(“data/countries2012.csv”)
plot(data$GDP/1000,data$TFR, xpd = TRUE, bty = “l”,
	 �main = “Total Fertility Rate vs. GDP, 2012”,

xlab = “GDP per capita (in 1000s $US)”,
ylab = “average births per woman”,
ylim = c(1,8), cex.main = 1.5,
cex.lab = 1.3, cex.axis = 1.1,
col = “cornflowerblue”, las = 1)

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 20

We don’t recommend overlabeling data points, since the labels can interfere with visibility of the data. If
you feel a need to label the data points, it may be a sign that you need to choose a different plot type or
parameters. That said, at times it may be useful to label one or more data points. To illustrate the method,
in this example, we label the U.S. in magenta. We also replot the data point itself in magenta to avoid
confusing it with nearby data points.

With the text() function it’s easy to label the point with the same coordinates we used to plot the data
point. We use (pos=3) to place the label above the point, so the two don’t overlap. Alternatively, the
position of the labels can be adjusted by making minor changes to the coordinates. Setting the legend
border with (bty=”l”) removes the top and right plot box lines for a cleaner look.

#+ fig.width = 5, fig.height = 5

Scatterplot with one label
data <- read.csv(“data/countries2012.csv”)
plot(data$GDP/1000,data$TFR, xpd = TRUE, bty = “l”,
	 �main = “Total Fertility Rate vs. GDP, 2012”,

xlab = “GDP per capita (in 1000s $US)”,
ylab = “average births per woman”,
ylim = c(1,8), cex.main = 1.5,
cex.lab = 1.3, cex.axis = 1.1,
col = “cornflowerblue”, las = 1)

usdata <- data[data$COUNTRY==”United States”,]
text (usdata$GDP/1000, usdata$TFR,
	 labels = usdata$COUNTRY, pos = 3, col = “magenta4”)
points (usdata$GDP/1000, usdata$TFR, cex = 1.2,
	 col = “magenta4”)

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 21

In the final scatter plot, we color the data points by continent:

#+ fig.width = 5, fig.height = 5

Scatterplot with continents labeled by color
data <- read.csv(“data/countries2012.csv”)
colors6 <- c(�“orange”,”cyan”,”blue”,”green”,

“black”, “red”)
plot(�data$GDP/1000,data$TFR, bty = “l”,

col = colors6[data$CONTINENT],
xlab = “GDP per capita (in 1000s $US)”,
ylab = “average births per woman”,
main = “Total Fertility Rate vs. GDP, 2012”,
las = 1, ylim = c(1,8), cex.main = 1.5, cex.lab = 1.3,
cex.axis = 1.1)

legend(�“topright”, pch = 21, legend = levels(data$CONTINENT),
col = colors6, bty = “n”)

Note that by setting the color to colors6[data$CONTINENT], the vector of colors, colors6, is paired
with the levels of the group variable data$CONTINENT. Therefore it may be helpful to view the levels of
the factor when choosing colors:

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 22

levels(data$CONTINENT)
[1] “Africa” “Asia” “Europe”
[4] “North America” “Oceania” “South America”

Colors should be rearranged so that nearby clusters such as Asia and Europe show as much contrast as
possible. It is essential, though, that colors remain consistent within a report or presentation to avoid
confusion.

A legend is added with the legend() function. The parameter legend is set to the levels of the group
variable and the color to the corresponding vector of colors, colors6. The number of colors must be equal
to the number of factors for the legend to be drawn properly.

5.2	 Scatterplot matrices (lattice)
A scatterplot matrix is useful for viewing all two-way relationships in a multidimensional data set. For
this example, we use the splom() function in the lattice package since we like its default settings, in
particular the lack of margin space between panels. In the following plot, we can simultaneously look at
the correlation of any of the six pairs among the four variables in our data set: total fertility rate (TFR), life
expectancy (LIFEEXP), gross domestic product (GDP), and child mortality (CHMORT). Note that the six
plots above the diagonal in the top left half of the graph are the same as the six in the bottom right half,
with the axes flipped. For this reason, some recommend placing additional plots such as single-variable
histograms on one half of the graph to avoid repetition. However, since relationships may be clearer with a
particular variable on a particular axis, we prefer to fill the entire square with scatterplots, as shown.16

16 For a more detailed explanation, see Jacoby (1998).

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 23

The scatterplot matrix clearly shows the positive correlation between child mortality rate and total fertility
rate, and the negative correlations between both life expectancy and total fertility rate, and between life
expectancy and child mortality. We also observe that all of the plots involving gross domestic product are
L-shaped, indicating that the relationships are not linear.

The plot is drawn in lattice with a simple call to splom(). The data is passed to the function as columns of a
data frame.

#+ fig.width = 7, fig.height = 7

library(lattice)
data <- read.csv (“data/countries2012.csv”)
data$GDP <- data$GDP/1000
splom(data[,c(“GDP”,”TFR”,”LIFEEXP”,”CHMORT”)],
	 scales = list(y = list(tick.number = 0)),
	 main = list(label = paste(�“World Development”,

“Indicator Correlations”),
	 cex = 1.7), xlab = NULL)

If we wish to observe continent clusters in the scatterplot matrix, as with the simple scatterplot, we set
col=colors3[data$CONTINENT]. We chose to limit the number of continents to three since any more
would be hard to distinguish in small plots.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 24

 #+ fig.width = 7, fig.height = 7

library(lattice)
colors3 <- c(“orange”,”cyan”,”blue”)
data <- read.csv (“data/countries2012.csv”)
data$GDP <- data$GDP/1000
data <- droplevels(data[data$�CONTINENT %in%

c(“Europe”,”Asia”,”Africa”),])
splom(data[,c(“GDP”,”TFR”,”LIFEEXP”,”CHMORT”)],
	 col = colors3[data$CONTINENT],
	 key = list(�space = ”bottom”,

	 points = list(pch = 21, col = colors3),
		 text = list(levels(data$CONTINENT))),
	 main = list(label = paste(�“World Development”,

“Indicator Correlations”),
	 cex = 1.7), xlab = NULL)

In addition to the correlations, the color scatterplot matrix shows a clear continent effect. In the top left
box, for example, we see that the vertical piece of the plot represents countries in Africa and the horizontal
piece countries in Europe. Another method for identifying group effects is the parallel coordinate plot,
which we’ll describe in the next section.

In lattice, (key=) creates the legend. This list of lists contains information on the location (space=),
symbol color lines=list(col=colors3), and text text=list(levels(data$CONTINENT))
for the legend. To ensure that the number of colors is equal to the number of factor levels, we used
droplevels() when subsetting the data to remove unused factor levels. An alternative would be to
subset the first three elements of the factor levels vector when drawing the legend.

5.3	 Parallel coordinate plots (MASS)
Graphs based on the coordinate system, such as the scatterplot, represent different variables on
perpendicular axes. The problem is that we are limited to at most three dimensions, and even a third
dimension can be difficult to decipher in two dimensional space. To cope with the challenge of displaying
multidimensional data, the parallel coordinate plot represents the variables on parallel axes, greatly
increasing the number of variables that can be conveniently and clearly displayed. Here we plot four world
development indicators on a parallel coordinate plot, grouped by continent:

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 25

We use the parcoord() in the MASS package to create the parallel coordinate plot. The function scales
each variable from 0 to 1. We use the axis() function to label the top and bottom of the y-axis “max” and
“min” respectively; (tick=FALSE) turns off the unnecessary axis line and tick marks.

#+ fig.width = 7, fig.height = 5

library(MASS)
par(bg = ‘white’)
data <- read.csv (“data/countries2012.csv”)
colors6 <- c(�“orange”,”cyan”,”blue”,”green”,

“black”,“red”)
parcoord(�data[,c(“GDP”,”TFR”,”LIFEEXP”,”CHMORT”)],

col = colors6[data$CONTINENT], xlim = c(1,5.25),
main = “World Development Indicators, by Continent”,
cex.main = 1.4, xaxs = “i”)

axis(2, at = c(0,1), labels = c(“min”, “max”), las = 1,
	 tick = FALSE)
legend(“right”, lty = 1, legend = levels(data$CONTINENT),
	 col = colors6, cex = .9, bty = “n”)

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 26

The order of the axes can greatly influence the look of the graph, as the chart below demonstrates.

The code for the second plot is identical to the first, with the exception of the beginning of the
parcoord() call:

parcoord(data[,c(“GDP”,”LIFEEXP”,”CHMORT”,”TFR”)],

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 27

6	� PERCENTS…
OR PARTS OF A WHOLE

Unidimensional data

6.1	 Pie charts (base)
If you design charts, you’re probably aware that the pie chart is quite controversial. The documentation for
the  pie() function in base graphics doesn’t pull any punches: “Pie charts are a very bad way of displaying
information.... A bar chart or dot chart is a preferable way of displaying this type of data.” We agree.
Experiments by Cleveland and McGill show that we judge position and length more accurately than angles
or areas.

One positive feature of pie charts, however, is that they clearly show that the sum of the wedges is 100%. To
retain this feature in bar charts, we created a “bar percent chart” with percent labels, which we’ll discuss in
the next section.

If you do use a pie chart, be sure the data you display represent parts of a whole. Otherwise the chart isn’t
just difficult to read, it’s nonsensical.

In this example, we use a pie chart to show the percentages of fathers without high school degrees who
had their first child within particular age brackets. (See Appendix A.2 for a data table.)

A pie chart is easily drawn in base graphics by sending a vector of values to pie(). The values are converted
to percents, if necessary, before the plot is drawn. Note that for long titles, creating a line break with \n is a
convenient way to divide the title without adding a second title line.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 28

#+ fig.width = 7, fig.height = 5	

data <- read.table (“data/fathers.txt”)
colors4 <- c(�“lightblue”, “skyblue3”, “rosybrown1”,

“rosybrown3”)
pie(data[,”NOHSDEG”], labels = data$AGE, col = colors4,
	 cex = 1.5)
mtext(paste(�“Fathers without High School Degrees:\n”,

“Age at First Child”), side = 3,
	 cex = 1.7, font = 2)	

6.2	 Bar percent charts (base)
For very small data sets, we generally prefer bar charts. To make it clear that our data points are parts
of a whole, we label the bars with percents to show that they total to 100%. We created a function
barpercent() to do this:

#+ fig.width = 7, fig.height = 3.5

source(“barpercent.R”)
data <- read.table (“data/fathers.txt”)
barpercent(data$NOHSDEG,data$AGE)
mtext(paste(�“Fathers without High School Degrees: \n”, “Age at

First Child”), side = 3, line = 1,
	 font = 2, cex = 1.5)

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 29

We include the code here because it shows off what we love about R: you are never limited by a set number
of chart types. If the chart you want isn’t available, you can create it—or more often than not, find a
package that has what you’re looking for. The file “barpercent.R” is available on Github.17

barpercent <- function (x, names = NULL) {
	 if (is.null(names)) names <- names(x)
	 par (las = 1, mar = c(5,10,4,6), xpd = NA, xaxs = “i”, yaxs = “i”)
data <- x[order(x)]*100/sum(x)
	 labels <- paste(names[order(x)],”	 “,
		 formatC(data,digits = 1, format = ”f”, width = 4))
	 xmax <- round(max(data), digits = -1)
	 ymax <- (length(x)*1.2) + .1
	 plot(NULL, xlim = c(0,xmax), ylim = c(0,ymax), axes = FALSE,
		 xlab = “percent”, ylab = ””)
	 barplot(data, horiz = TRUE, names.arg = labels,
		 col = “lightblue”, border = “lightblue”,
		 axes = FALSE, add = TRUE)
	 axis (1, pos = 0, xlim = c(0,xmax), at = c(0,1:(xmax/10)*10))
	 hat <- -xmax/16.66667
	 text(hat, .2, “100.0”, adj = c(1,1))
	 text(hat, .2, “%”, adj = c(0,1))
	 lines(c(.3,3.2)*hat,c(.25,.25))
}

17 https://github.com/nbrgraphs/mro

https://github.com/nbrgraphs/mro

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 30

Multidimensional data

6.3	 Multiple pie charts (base)
What if we’re interested not only in the age at which fathers who didn’t complete high school had their first
child, but fathers with a range of educational levels? A common approach is to draw a series of pie charts:

#+ fig.width = 5.5, fig.height = 4

data <- read.table(“data/fathers.txt”)
colors4 <- c(�“lightblue”, “skyblue3”, “rosybrown1”,

“rosybrown3”)
par(mfrow = c(2,2), mar = c(1,0,1,0), oma = c(0,2,3,0))
pietitles <- c(�“No H.S. degree”, “H.S. degree”,

“Some college”, “College degree”)
for (i in 2:5) {
	 pie(�data[,i], labels = data$AGE,

main = pietitles[i-1], col = colors4)
}
mtext(“Father’s Age at First Child, by Education”,
	 side = 3, line = 1, outer = TRUE, cex = 1.5, font = 2)
mtext(“Not recommended!”, side = 2, font = 2,
	 outer = TRUE, col = “red”)

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 31

We’re able to put four graphs in one plot using par(mfrow=c(2,2)). To avoid cutting off the labels, we
eliminate the left and right margins, and for overall spacing shrink the top and bottom margins of each
graph to 1 with mar=c(1,0,1,0). Extra space is needed to fit the title and y-axis label, so we change the
left outer margin to 2 and the top outer margin to 3: oma=c(0,2,3,0). (The default is 0 on all sides.) Note
that with mtext() we need (outer=TRUE) for the text to appear in the outer margin. Getting the spacing
right with pie charts is a challenge—another incentive not to use them.

In terms of the content, we find this graph particularly confusing. It’s difficult to read one pie chart, let
alone compare one to another, particularly since certain categories, such as “25–29 yrs”, appear in different
places in different pies due to the variety of wedge sizes. What are our alternatives?

6.4	 Divided bar charts (base)

A divided bar chart is a common option for comparing parts of a whole in different groups. The coding is
the same as for a stacked bar chart, but the columns all sum to 100%, so the bar chart is even on both sides.
While we’re not big fans of stacked bar charts, the divided bar chart does a fair job at showing percents.
We clearly see here that the percentage of fathers who had their first child before they turned 20 decreases
significantly as education increases (light blue bars on the left). Likewise, the percentage who had their first
child in the 30–44-year-old age range increases with education (dark pink bars on the right). The dark blue
and light pink bars representing middle age ranges are more difficult to compare since they don’t have a
common starting point. Even so, trends are discernible.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 32

#+ fig.width = 7, fig.height = 4.5

par(mar = c(5, 8, 4, 2))
fathers <- read.table(“data/fathers.txt”)
columns <- c(“COLLDEG”, “SOMECOLL”, “HSDEG”,”NOHSDEG”)
data <- as.matrix(subset(fathers, select = columns))
colors4 <- c(��“lightblue”, “skyblue3”, “rosybrown1”,

“rosybrown3”)
edugroups <- c(�“College degree”, “Some college”,

“H.S. degree”, “No H.S. degree”)
barplot (�data, names.arg = edugroups, horiz = TRUE,

col = colors4, border = colors4, xlab = “percent”,
ylim = c(0,5.5), cex.axis = 1.3, cex.names = 1.2,
cex.lab = 1.3, las = 1)

legend (�“top”, legend = fathers$AGE, fill = colors4,
border = colors4, bty = “n”, cex = 1.1, horiz = TRUE)

title (“Father’s Age at First Child, by Education”, cex.main = 1.6)

The divided bar chart is drawn in base graphics by passing a matrix of values to the barplot() function.
The stacks represent the columns of the matrix and the colors represent the rows. When converting to
matrix form with as.matrix(), we begin with the factor level we want to appear at the bottom of the
chart, in this case COLLDEG, since horizontal bar charts are drawn in base graphics from the bottom up.
Setting the border color (border=) to the same vector of colors as the fill color (col=) provides a cleaner
look than does the default black border color. (You may have noticed that we kept the black borders in the
histograms since the bars are adjacent.)

We extend the y-axis a bit (ylim=) so the legend doesn’t overlap with the bars. If you wish to extend the
x or y coordinate ranges with xlim / ylim but don’t know what the current ranges are—it’s not always
obvious—you can get an approximation with par(“usr”), which returns the x and y ranges, respectively.

The legend should be as easy to read as possible, so we placed it on the top of the graph with the color
boxes in the same order as the bars in the chart. If the bars were vertically stacked, we would place the
legend on the right, once again with the colors ordered as they are in the graph. If this doesn’t happen
automatically, resort the order of the (legend=) vector. The default box drawn around the legend is
distracting, so we remove it with (bty=”n”).

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 33

6.5	 Grouped bar charts (base)

The advantage of the grouped bar chart is that values can easily be compared both within and across
educational levels, since all bars begin in the same place—the x-axis. The downside is that bars of the same
color are not adjacent and therefore more concentration is required to observe trends.

The code for the grouped bar chart is nearly identical to that of the divided bar chart. We add
(beside=TRUE) so bars are placed alongside each other rather than stacked, remove (horiz=TRUE) to
draw vertical bars, and adjust labels and coordinate limits as needed.

#+ fig.width = 7, fig.height = 5

fathers <- read.table(“data/fathers.txt”)
columns <- c(“NOHSDEG”, “HSDEG”, “SOMECOLL”, “COLLDEG”)
data <- as.matrix(subset(fathers, select = columns))
colors4 <- c(�“lightblue”, “skyblue3”, “rosybrown1”,

“rosybrown3”)
edugroups <- c(�“No H.S. degree”, “H.S. degree”,

“Some college”, “College degree”)
barplot(�data, names.arg = edugroups, beside = TRUE,

col = colors4, border = colors4, ylab = “percent”,
ylim = c(0,58), cex.axis = 1.3, cex.names = 1.1,
cex.lab = 1.3, las = 1)

legend(�“top”, fill = colors4, border = colors4, bty = “n”,
legend = fathers$AGE, cex = 1.2, horiz = TRUE)

title (�“Father’s Age at First Child, by Education”,
cex.main = 1.6)

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 34

6.6	 Faceted bar charts (ggplot2)
Facets offer a powerful way to represent multidimensional data. To avoid the cluttering and confusion
that inevitably accompanies attempts to display an entire multidimensional data set in one graph, the
data is organized into multiple small plots or panels. Each contains subsets of the data conditioned on
levels of one or more variables.18 We switch to ggplot2 here since R base graphics doesn’t offer a system
for faceting. We present a very simple case of faceting: a plot of the fatherhood data in four panels,
conditioned on education level:

We use a single color since the layout of the panels allows us to compare bars horizontally (across
education levels) or vertically (within an education level) without having to focus on a particular color.
While we like the overall structure, one downside is the condensed nature of the bars resulting from
plotting four panels of horizontal bar charts in a single row.

18 �The concept was developed and introduced to S by William Cleveland and colleagues as trellis displays, and
implemented in R in the lattice package. In The Grammar of Graphics, on which the gglot2 package is based,
Leland Wilkinson defines facets more generally as “frames of frames.”

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 35

#+ fig.width = 7, fig.height = 3

library(ggplot2)
library(tidyr)
fathers <- read.table(“data/fathers.txt”)
data <- gather(�fathers, key = EDUCATION, value = PERCENT,

-AGE)
levels(data$EDUCATION) <- c(�“No H.S. degree”, “H.S. degree”,

“Some college”, “College degree”)
g <- ggplot(data, aes(x = AGE, y = PERCENT))
g + �geom_bar(stat = “identity”, fill = “lightblue”) +

coord_flip(expand = FALSE) +
facet_grid(.~EDUCATION) + theme_bw(16) +
theme(axis.line = element_blank(),
		 axis.ticks.length = unit(0, “cm”),
		 panel.grid.major.y = element_blank(),
		 panel.grid.minor = element_blank(),
		 strip.background = element_rect(fill=”grey90”),
		 strip.text.x =

			 element_text(margin = margin(t = 5, b = 5)),
		 plot.title = element_text(face = “bold”)) +
ggtitle(“Father’s Age at First Child, by Education”) +
xlab(NULL) + ylab(“percent”)

It’s beyond the scope of this introduction to explain the ggplot2 system from the ground up. Winston
Chang’s R Graphics Cookbook and package author Hadley Wickham’s ggplot2: Elegant Graphics for Data
Analysis are excellent resources for learning the package systematically. As indicated earlier, the ability
to convert data into long form is key for ggplot2. Two other packages, also by Hadley Wickham, tidyr
and dplyr, provide highly intuitive functions for getting the data in proper form before plotting. RStudio
provides excellent cheat sheets for all three.19

Regarding our code, ggplot2 users will note that the fill color is added to geom_bar(), not the
ggplot() aesthetic aes(), since it doesn’t vary. We create a horizontal chart using coord_flip,
adding (expand=FALSE) to eliminate a gap between the chart and the axes, similar to (xaxs=”i”) and
(yaxs=”i”) in base. Since we flipped the coordinates, the axis labels are the opposite of what we expect:
we use (ylab=”percent”) to label the x-axis. In general the default font sizes in ggplot2 are quite small,
but they can be easily increased by passing a larger base font size to the theme, such as theme_bw(16).
The base font size is the font size of the axis labels; by default, the plot title is 20% larger and the tick mark
labels are 20% smaller. Of course, these relative sizes can be changed by adjusting the theme elements
individually.

The next example shows how faceting can be combined with color to show living arrangements of four
groups of older male and female age groups (see Appendix A.3 for a data table). Again, the structure of
the graph allows us to compare down the columns within one age group or along the rows for cross-age
comparisons. In the next section we’ll consider another way to present the same data.

19 https://www.rstudio.com/resources/cheatsheets/

https://www.rstudio.com/resources/cheatsheets/

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 36

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 37

#+ fig.width = 7, fig.height = 4

library(ggplot2)
data <- read.csv(“data/living.csv”)
colors2 <- c(“lightblue”,”skyblue3”)
data$LIVING <- factor(�data$LIVING, levels =

c(�“Other group quarters”,
“Nursing home”,
“Alone in household”,
“With others in household”))

twolinelabels <- c(�“Other group\nquarters”,
“Nursing home”,
“Alone in\nhousehold”,
“With others\nin household”)

data$AGE <- factor(data$AGE, levels = c(�“70-79 yrs”,
“80-89 yrs”,
“90-99 yrs”,
“100+ yrs”))

g <- ggplot(data, aes(�x = LIVING, y = PERCENT,
fill = SEX))

g + �geom_bar(stat = ”identity”, position = “dodge”) +
scale_x_discrete(labels = twolinelabels) +
scale_fill_manual(�values = colors2,

limits = c(“Male”,”Female”)) +
scale_y_continuous(breaks = c(0,30,60)) +
coord_flip() + facet_grid(. ~ AGE) +
theme_bw(16) +
theme(axis.ticks.length = unit(0, “cm”),
	 legend.title = element_blank(),
	 legend.position = c(.9,-.2),
	 legend.key = element_blank(),
	 legend.key.size = unit(.8, “lines”),
	 panel.grid.major.y = element_blank(),
	 panel.grid.minor = element_blank(),
	 strip.background = element_rect(fill = ”grey90”),
	 strip.�text.x = element_text

(margin = margin(t = 5, b = 5)),
	 plot.title = element_text(�hjust = 0, size = 16,

face = “bold”),
	 plot.margin = margin(8,8,24,8)) +
xlab(NULL) + ylab(“percent”) +
ggtitle (“Living Arrangements of Older Age-Sex Groups”)

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 38

Since the bars will be plotted according to the factor levels, we use factor() to set the levels to the
desired order. Two line labels are added with (labels=) in scale_x_discrete(). Colors are set with
(values=) in scale_fill_manual. We use (limits=) in the same line to set the order of the legend
entries to match the order of the bars in the chart. In scale_y_continuous(), setting (breaks=)
prevents the x-axis from becoming too crowded with tick mark labels. We make a number of changes to
the theme, primarily removing grid lines, borders, and other unnecessary elements from the plot. You can
expedite the process by creating a custom theme. We choose not to do that here to make the changes
more transparent. The following chart shows additional textual elements that can be altered with theme():

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 39

7	 SPECIAL CASES
7.1	 Diverging stacked bar charts (HH)
Some categorical data, particularly attitudinal research results, are derived from scales with diverging
categories. It can be a challenge to plot such data. If, for example, we use bars to represent “Strongly
Agree,” “Agree,” “Neutral,” “Disagree,” and “Strongly Disagree,” we are not able to show that the categories
are points along a scale with extremes at both ends. Diverging stacked bar charts are a preferred option in
this case since they preserve this aspect of the data. They are well-suited for attitudinal “Likert” data, but
can be used for any categorical data with categories that fall into two opposing groups.

Diverging stacked bar charts look similar to divided bar charts, but rather than starting and ending in
the same place (see section 6.4), the bars are centered on a reference line in the middle of the “neutral”
category, or between the least extreme opposing categories if no neutral category exists.

Here we show a diverging stacked bar chart for the results of a public attitude question about video games:

We clearly see from the bars which questions have responses that skew toward the “true” (blue) pole and
those that skew to the “not true” (red) pole. The reference line is placed behind the data so as not to make
the “unsure” category look like two groups.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 40

#+ fig.width = 7, fig.height = 5	

library(HH)
Question <- c(“Are a waste of time”,
“Help develop good\nproblem solving skills”,
“Promote teamwork and\ncommunication”,
“Are a better form of\nentertainment than TV”)
data <- data.frame(“not true for\nmost games”
	 = c(24,16,23,30),
	 “unsure” = c(16,20,28,24),
	 “true for some games,\nbut not others”
	 = c(33,47,37,34),
	 “true for\nmost games” = c(26,17,10,11),
	 Question, check.names = FALSE)
likert(Question ~ ., data,
	 ReferenceZero = 2,
	 positive.order = TRUE,
	 main = “Public Attitudes Toward Video Games”,
	 xlab = paste(�“% of all adults who think the”,

“above qualities are...”),
	 ylab = “”)

The likert() function is found in the HH package. The data passed to the function contains a column of
responses for each value of the scale and an optional column of statements or questions associated with
each row of data. If omitted, row names of the data structure are used. Since we have an even number of
categories, we specify that the second category (“unsure”) is the neutral one with (ReferenceZero=2).
The other parameter, besides the labels, is (positive.order=TRUE), which orders the bars in descending
order from the top, beginning with the one that protrudes furthest to the right. Here we show the living
arrangements data using the likert() function:

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 41

The diverging stacked bar chart clearly distinguishes between institutional living (“Other group quarters”
and “Nursing home”) and home living (“Alone in household” and “With others in household”). With the
bars ordered, we see that age is the primary factor in determining whether individuals will live at home. In
addition, within each age bracket, men are more likely to live at home than women.

#+ fig.width = 8, fig.height = 5

library(HH)
library(tidyr)
library(dplyr)
data <- read.csv(“data/living.csv”)
newlevels <- c(�“Other group quarters”,”Nursing home”,

“Alone in household”,
“With others in household”)

data$LIVING <- factor(data$LIVING, levels = newlevels)
ldata �<- spread(data, key = LIVING, value = PERCENT) %>%

mutate(GROUP = paste(AGE,SEX))
likert(�GROUP~., ldata, positive.order = TRUE,

main = “Living Arrangments of Older Age-Sex Groups”,
xlab = “percent”, ylab = “”)

There are many creative uses for a diverging stacked bar chart, including age pyramids and profit/loss data.
For more info, see Heiberger and Robbins (2014).20

20 https://www.jstatsoft.org/article/view/v057i05

https://www.jstatsoft.org/article/view/v057i05
https://www.jstatsoft.org/article/view/v057i05

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 42

7.2	 Linked micromaps (micromapST)

Linked micromaps are extremely useful for geographically referenced data—such as states, countries, or
counties—as they help us visualize geographic patterns in the data. In a linked micromap, a variable of
interest is ordered by size and then the data is split into groups of about five, depending on the size of the
data set. This format works well since often information is digested better in small carefully chosen chunks
than in, as Alberto Cairo puts it, “a single, large, ultra-complex, cluttered display.”21 Color is used to link the
regions indicated in the map with the region names and associated data.

The linked micromap plot here was produced with micromapST, a package for drawing linked micromaps
for the 50 U.S. states and the District of Columbia. Other packages are available for other geographic
regions.

21 �”Falling in Love with Micromaps” http://www.thefunctionalart.com/2013/07/falling-
in-love-with-micromaps.html

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 43

#+ fig.width = 7.5, fig.height = 10

library(micromapST)
data <- read.csv(“data/acs2014.csv”, row.names = 1)
data <- data[order(data$Income),]

panelDesc <- data.frame(
	 type = c(“map”, “id”, “dot”, “dot”),
	 lab1 = c(“”, “”, “Median Age”, “Median Income”),
	 lab3 = c(“”, “”, “”, “in 2014 inflation-adjusted $”),
	 col1 = c(NA, NA, “Age”, “Income”))

micromapST(data,panelDesc, rowNames = “full”, sortVar = ”Age”,
	 ascend = FALSE,
	 title = paste(�“2010-2014 American Community”,

“Survey: State Age and Income”),
	 details = list(Title.cex = 1.4))

Before plotting, we created a simple data frame with two columns, one for median age and one for median
income. See Appendix A.4 for the data source. The row names must contain the state names, plus the
District of Columbia. Three formats are acceptable: the full names, two-letter abbreviations, or two-digit
FIPS codes. That is the only data the user supplies. All of the geographical data needed to draw the plots is
built into the micromapST package.

Next we create a data frame, panelDesc, that contains information about the structure of the plot. Each
element of the type variable specifies the graphical type for each column of the plot. To keep it simple,
we used dot for both of the plot columns, though many other options are available—arrow charts, bar
charts, stacked bar charts, box plots, dot with confidence intervals, scatterplots, and time-series plots—
many of which require additional columns of data. The variables lab1, lab2, and lab3 provide the title,
subtitle, and footer for each column. The last variable col1 specifies the data either by column name or
number. For chart types that require more than one column of data, col2 and col3 are included. Finally
we set the overall title and title font size with the (details=) parameter. As with many other plots we’ve
described here, this is a basic example. Additional options can be found in the package documentation and
in Carr and Pickle (2010).

The call to micromapST() draws the plot. In addition to passing data and panelDesc to the
function, we add a few other parameters. We indicate that we are using full state names as row names
(rowNames=”full”), that the variable on which to sort (sortVar=) is “Age”, and that (ascend=FALSE)
is set, so the data is presented from top to bottom in descending order, i.e. Maine, with the highest median
age, appears at the top of the chart.22 Finally, we add a title and specify the title font size with the details
parameter.

22 �This behavior is different from base graphics, where dot charts are plotted from the bottom up rather than the
top down.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 44

8	 CONCLUSION
We hope we have inspired you to try some new graphs in R. With more than 8,000 packages available and
the ability to create your own graphic forms, the possibilities are endless. What will your next graph look
like?

We look forward to hearing from you. Please direct comments regarding effective graph design to
naomi@nbr-graphs.com and R comments to joycerobbins1@gmail.com.

mailto:naomi%40nbr-graphs.com?subject=Effective%20Graphs%20with%20Microsoft%20ROpen
mailto:%20joycerobbins1%40gmail.com?subject=Effective%20Graphs%20with%20Microsoft%20ROpen

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 45

APPENDICES
A	 Data and sources

A.1	 countries2012.csv

data <-read.csv(“data/countries2012.csv”)
str(data)
‘data.frame’: 179 obs. of	6 variables:
$ COUNTRY : Factor w/ 179 levels “Afghanistan”,..: 1 2 3 4 5 6 7 8 9
10 ...
$ CONTINENT : Factor w/ 6 levels “Africa”,”Asia”,..: 2 3 1 1 4 6 3 5
3 3 ...
$ GDP : num 691 4247 5584 5532 13526 ...
$ TFR : num 5.27 1.76 2.91 6.25 2.1 ...
$ LIFEEXP : num 59.7 77.4 74.3 51.5 75.6 ...
$ CHMORT : num 99.5 15.5 26.1 172.2 9.1 ...

Source: http://databank.worldbank.org/

A.2	 fathers.txt

data <-read.table(“data/fathers.txt”)
str(data)
‘data.frame’: 4 obs. of	 5 variables:
$ AGE : Factor w/ 4 levels “< 20 yrs”,”20-24 yrs”,..: 1 2 3 4
$ NOHSDEG : int 21 49 21 9
$ HSDEG : int 15 45 27 13
$ SOMECOLL : int 10 35 35 20
$ COLLDEG : int 3 12 42 43

Source: http://www.pewresearch.org/fact-tank/2015/06/19/college-educated-men-take-their-time-
becoming-dads/

http://databank.worldbank.org/
http://www.pewresearch.org/fact-tank/2015/06/19/college-educated-men-take-their-time-becoming-dads/
http://www.pewresearch.org/fact-tank/2015/06/19/college-educated-men-take-their-time-becoming-dads/

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 46

A.3	 living.csv

data <-read.csv(“data/living.csv”)
str(data)
‘data.frame’: 32 obs. of	 4 variables:
$ AGE : Factor w/ 4 levels “100+ yrs”,”70-79 yrs”,..:
	 2 2 2 2 2 2 2 2 3 3 ...
$ SEX : Factor w/ 2 levels “Female”,”Male”: 2 1 2 1 2
	 1 2 1 2 1 ...
$ LIVING : Factor w/ 4 levels “Alone in household”,..: 4 4 1 1
	 2 2 3 3 4 4 ...
$ PERCENT : num 81.5 65.9 16.6 31.9 1.4 1.8 0.4 0.3
	 71.4 46.2 ...

Source: https://www.census.gov/prod/cen2010/reports/c2010sr-03.pdf

A.4	 acs2014.csv

data <-read.csv(“data/acs2014.csv”, row.names = 1)
str(data)
‘data.frame’: 51 obs. of	 2 variables:
$ Age : num 38.2 33.4 36.5 37.6 35.6 36.2 40.3 39.1
	 33.7 41.2 ...
$ Income: int 54724 83714 59088 51464 70187 73817
	 88217 72683 82791 57176 ...

Source: 2010–2014 American Community Survey 5-Year Estimates

Table: GCT0101 - “Median Age of the Total Population”
http://factfinder.census.gov/bkmk/table/1.0/en/ACS/14_5YR/GCT0101.US01PR

Table: GCT1902 - “Median Family Income”
http://factfinder.census.gov/bkmk/table/1.0/en/ACS/14_5YR/GCT1902.US01PR

https://www.census.gov/prod/cen2010/reports/c2010sr-03.pdf
http://factfinder.census.gov/bkmk/table/1.0/en/ACS/14_5YR/GCT0101.US01PR
http://factfinder.census.gov/bkmk/table/1.0/en/ACS/14_5YR/GCT1902.US01PR

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 47

B	 Base graphics cheat sheet

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 48

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 49

REFERENCES
Carr, Daniel B. and Linda Williams Pickle. 2010. Visualizing Data Patterns with Micromaps. CRC Press.

Chang, Winston. 2013. R Graphics Cookbook. O’Reilly Media.

Cleveland, William S. 1994. The Elements of Graphing Data. 2nd ed. Hobart Press.

Heiberger, Richard, and Burt Holland. 2015. Statistical Analysis and Data Display: An Intermediate Course
with Examples in R. 2nd ed. Springer.

Heiberger, Richard M., and Naomi B. Robbins. 2014. “Design of Diverging Stacked Bar Charts for Likert
Scales and Other Applications.” Journal of Statistical Software, 57 (5).

Jacoby, William G. 1998. Statistical Graphics for Visualizing Multivariate Data. Sage.

Murrell, Paul. 2011. R Graphics, Second Edition. CRC Press.

Robbins, Naomi B. 2013 [2004]. Creating More Effective Graphs. Chart House.

Tufte, Edward R. 2001. The Visual Display of Quantitative Information. 2nd ed. Graphics Press.

Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer.

Wilkinson, Leland. 2005. The Grammar of Graphics. 2nd ed. Springer.

Xie, Yihui. 2015. Dynamic Documents with R and knitr, Second Edition. CRC Press.

https://www.jstatsoft.org/article/view/v057i05
https://www.jstatsoft.org/article/view/v057i05

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 50

A
abline() 10–12
Anscombe’s Quartet 4
as.matrix() 32
axis() 25
axis limits 10

B
bar charts

bar percent charts 27–28
diverging stacked bar charts 39–41
divided bar charts 31–32
faceted bar charts 34–38
grouped bar charts 33
simple bar charts 9–10

bar percent charts 28–29
barplot() 9–10, 32
base graphics 6
Bell Laboratories 5
boxplot() 15
box plots 15

C
Cairo, Alberto 42
Carr, Daniel 43
Chang, Winston 35
chart choosers, problems 8
Cleveland, William 5, 8, 11, 34
colors() 10
computation time 6
coord_flip 35
correlation 19, 22–24
CRAN 5

D
data sets

father’s age and education 27–33
fertility rates 9–15
living arrangements 35–38, 40–41
road casualties 17–18
U.S. population 16
U.S. states, median age and income 42–43
video game attitudes 39–40
world development 22–26

distributions 13
diverging stacked bar charts 39–41
divided bar charts 31–32
dotchart() 11
dot plots 11–12
droplevels() 24

E
effective graphs 8
effective graphs blog on Forbes 13
examples, see datasheets
exploratory data analysis 8

F
faceted bar charts 34–38
factor() 38
factor level order 15, 24, 32, 37
figure height 7, 10
figure width 7, 10
functions, creating 11
functions, see code

G
geom_bar() 35
graphics devices 6–7
gridlines 10–11
grouped bar charts 33

H
Heiberger, Richard 8, 41
histograms 13–15
horizontal axis labels 10
horizontal bars 10
horizontal lines 10

J
Jacoby, William 22

L
labeling data points 20
legend() 22
legends 22, 24, 32
length, judging 10, 27
likert() 8, 40
line break in plot text 27

INDEX

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 51

line charts 16–18
linked micromaps 42–43

M
margins 10, 31
micromapST() 43
Microsoft R Open 5–6
Microsoft R Portal 5–6
monthplot() 18
month plots 18
mtext() 31
multidimensional data 22, 24, 30, 34
multiple pie charts 30–31
Murrell, Paul 10

N
names() 10

O
overlapping symbols 11

P
packages

checkpoint 5
dplyr 35
ggplot2 6, 34–38
grid 6
HH 6, 8, 39–41
knitr 7, 10
lattice 6, 22–24
MASS 6, 24–25
micromapST 6, 42
tidyr 35

par() 31–32
parallel coordinate plots 24–26
parcoord() 25–26
parts of a whole 27–38
perception 5
Pickle, Linda 43
pie() 27–28
pie charts 27–28

multiple pie charts 30–31

plot() 6
plot sizes 7
position, judging 11, 27

R
R, advantages of 5
R, help 6
relationships 19–26
reproducibility 5
Revolution Analytics 5
Robbins, Naomi 8, 52
RStudio cheatsheets 35

S
scale_fill_manual 38
scale_x_discrete() 38
scale_y_continuous() 38
scatterplot matrices 22–24
scatterplots 19–24
Schumacher, Aaron 13
S language 5, 33
splom() 22–23

T
text() 12, 20
theme() 38
theme_bw 35
time-series 17–18, 43
trellis displays 34
ts() 17
Tufte, Edward 8
Tukey, John 4

V
vertical lines 10

W
Wickham, Hadley 35
Wilkinson, Leland 34

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 52

ABOUT THE AUTHORS

Naomi B. Robbins is a consultant and seminar leader who specializes in the graphical display of data.
She trains employees of corporations and organizations on the effective presentation of data. She also
reviews documents and presentations for clients, suggesting improvements or alternative presentations
as appropriate. She is the author of Creating More Effective Graphs, first published by John Wiley (2005)
and now by Chart House (2013). In addition to her one- and two-day seminars on creating more effective
graphs, she offers short programs including “Recognizing Misleading and Deceptive Graphs” and “How
to Avoid Common Graphical Mistakes.” Dr. Robbins received her Ph.D. in mathematical statistics from
Columbia University, M.A. from Cornell University, and A.B. from Bryn Mawr College. She is active in the
American Statistical Association and is the immediate past-chair of the Statistical Graphics Section. She
is the organizer for the Data Visualization New York Meetup, and had a long career at Bell Laboratories
before forming the consulting practice, NBR.

Joyce Robbins specializes in the communication of social data, with expertise in both quantitative and
qualitative methods. She received her Ph.D. in sociology from Columbia University, her M.A. in sociology
and anthropology from Tel Aviv University, and her B.S.E. in civil engineering and operations research from
Princeton University. Before joining NBR, she was Assistant Professor of Sociology at Touro College in New
York City, and prior to that taught high school mathematics and computer science.

Acknowledgments
Many thanks to David Smith of Microsoft for inviting us to write this monograph, and to Terry Christiani for
coordinating the project. We are grateful for the detailed feedback we received from Karen Bryan, Keith
Chamberlain, Richard Heiberger, John Rosenfelder, and David Smith. Finally, we thank Julian Glickman for
assisting with research.

EFFECTIVE GRAPHS WITH MICROSOFT R OPEN	 53

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

	1	Introduction
	1.1	Why visualize data?
	1.2	Why use R?
	1.3	Why use Microsoft R Open?
	1.4	How do I start using Microsoft R Open?
	1.5	Which graphics package should I use?
	1.6	How should I size and save my graphs?
	1.7 	What is an effective graph?

	2	Direct comparisons
	2.1	Bar charts (base)
	2.2	Dot plots (base)

	3	Distributions
	3.1	Histograms (base)
	3.2	Box plots (base)

	4	Trends over time
	4.1	Line charts (base)
	4.2	Month plots (base)

	5	Relationships
	5.1	Scatterplots (base)
	5.2	Scatterplot matrices (lattice)
	5.3	Parallel coordinate plots (MASS)

	6	�Percents…
or parts of a whole
	6.1	Pie charts (base)
	6.2	Bar percent charts (base)
	6.3	Multiple pie charts (base)
	6.4	Divided bar charts (base)
	6.5	Grouped bar charts (base)
	6.6	Faceted bar charts (ggplot2)

	7	Special cases
	7.1	Diverging stacked bar charts (HH)
	7.2	Linked micromaps (micromapST)

	8	Conclusion
	Appendices
	A	Data and sources
	A.1	countries2012.csv
	A.2	fathers.txt
	A.3	living.csv
	A.4	acs2014.csv

	B	Base graphics cheat sheet

	References
	Index
	About the authors
	Acknowledgments

