CDF of Sample Quantile

Prepared by: Dr. Bentley Coffey, The Cadmus Group
2.17.11

We are interested in computing the probability that a sample quantile, g, exceeds a threshold, t:*
Pr(q =1 =YX +vXjsg = 1:)

Where X; is the j™ order statistic of an iid sample drawn of size n from a parent distribution, X+ = Xg
and the CDF of X is given by ®@ and pdf by ¢ (so normal here but this should work for any continuous
parent distribution). By default, R computes the sample quantile using the following values for y €[0,1)
and je{0,...,n-1}:

y=m—-Dp—j
j=Iln-1p]

Where |] is the floor operator (i.e. round down to the nearest integer) and p = ®(q) > 0. We can
accomplish this in R via brute force Monte Carlo:

Prob.Sample.Quantile.Exceeds.Threshold <-
mean(replicate(Num.Simulations,quantile(rnorm(N,mean,sd), Percent)>=Threshold))

But, unfortunately, that’s far too slow for the application. Rather than performing this N-dimensional
integration with simulation, we can do some math to simplify the problem and speed up its solution.
The joint pdf of Xp; and X,y is given by:

n!

DI(n—G+ 1)

pdf (Xpjp, Xpje1y) = [(i] o (X)) ()L — o (Xpar)]" YV B (Xyje)

The marginal pdf of Xj.q; is given by:

n!

pdf (Xjjsn) = [((]. Ty e 1))!] O(Xjan)'[L = @(Xja)]

n—(+1)

¢ (Xpja1y)

'The quantity gets computed MANY times inside of a larger program and it is imperative that the computation of
this is fast. The larger program performs an optimization search with a numerically integration of an interpolation
of many points generated from this routine at each step in the optimization. The ultimate application is to find n so
as to maximize a net benefit objective that is linear in costs and benefits are linear in the confidence of a quality
acceptance sampling scheme (i.e. benefits accrue if the quantile of parent distribution with probability p exceeds
the threshold AND the quantile of the size n sample also exceeds the threshold. This is repeated for several
different parent distributions...

Using Bayes’ identity defining the condition pdf of Xy | X1

df (X;, X;j o(x) I o(xy
pdf (X Xj1) [() | o [’+1])1{Xm < Xpjea))

pdf (X |X(je11) = =)
(Xt 1) pdf (Xjjs1) (X))l P(Xpjan)

We can solve for the smallest X; as a function of X1, call it Xj;"(Xg.1) such that g exceeds the threshold
(using definition above):

T —yX[j+1]

Xjan 2 X[Kyjan) = =75

Integrating the conditional probability over the region where q exceeds t:

. (X (Xpiaa))T
Pr(Xp = X[(Xpsap X)) = 1—[—(Phalue)] 1{Xpje1y = 7}
P(X[j417)

Our quantity of interest can be found by multiplying the conditional probability by the marginal pdf and
integrating:

Pr(qg=1) = f Pr(Xyy = X(3 (Xpsa|Xpj+ay) pAf (Xj411)

X[j+1]
Which we can write in terms of expectations using the definition of the expectation operator:
Pr(q = 1) = By, (Pr(Xy) = X Xpaa)|Xpjen)))

Working with expectation conditional on X[j+1] > tis actually more computationally efficient because
the integrand is only evaluated where we know it to be non-zero

Pr(q 2) = Exyixyanzr (Pr(Xi1 2 X5 (Xaap Xy 2 7)) Pr (K 2 7)

Note that, when y =0, this reduces to a “closed-form” probability = Pr(X.;; = 1)

Each of these pieces should be easily computable in R:
1. Probability X[j+1] > t:

Pr(X[j+1] = T) =1- CDFX[j+1] (1) =1 —=CDFpptq(@(t);G+D+1L,n—-G+1)+1)
l:)I'(X[j+1] = T) = CDFpinom U, n, ®(7))

Simply:
Prob.Order.Stat.jPlus1.Exceeds.Threshold <- pbinom(j,n,pnorm(Threshold)

2. Integral of conditional probability:

D (X[;(Xpj+1))
P(Xpj41))

o0 j
Exjolxyonee (Pr(Xi) = TlX(ja0y 2 7)) = f 1= [] pf (Xjj411)d Xjjay)
T

Because Xj; = @™ (Uy), where Uy is the j™ order statistic of the uniform distribution, we can perform a
convenient change of variables here:

® () * - J
JEAICRICT))
EX[J'+1]|X[1'+1]21'(') = J 1- pdf(U[j+1])d Ui

o | ® ((q)_l(u[jﬂl))) |

Because U[j] is distributed as beta(j,N-j+1), we can perform another convenient change of variables:

@ ()

|o (X[*j] (® (COFrka(Us + LN = G+ 1) - 1)))>ﬂ
1| | [dU

oo | (oo |

Exjanlxganze() =

Just a few lines of rocket-fast code:

Uniform.Random.Draws <- runif(Num.Simulations,pnorm(Threshold),1)
Order.Stat.jPlus1.Draws <- gnorm(qgbeta(Uniform.Random.Draws,j+1,n-(j+1)+1))
Order.Stat.j.Min <- (Threshold — Gamma.Weight* Order.Stat.jPlus1.Draws)/(1-Gamma.Weight)
Prob.Sample.Quantile.Exceeds.Threshold.Given.Order.Stat.jPlus1.Exceeds. Threshold <-
mean(1 — (pnorm(Order.Stat.j.Min) /pnorm(Order.Stat.jPlus1.Draws))*j)
Prob.Sample.Quantile.Exceeds.Threshold <- Prob.Order.Stat.jPlus1.Exceeds.Threshold *
Prob.Sample.Quantile.Exceeds.Threshold.Given.Order.Stat.jPlus1.Exceeds. Threshold

