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1 Introduction

This document is an update of a technical report written several years ago at Stan-
ford [6], and is intended to give a short overview of the methods found in the rpart

routines, which implement many of the ideas found in the CART (Classification and
Regression Trees) book and programs of Breiman, Friedman, Olshen and Stone [1].
Because CART is the trademarked name of a particular software implementation of
these ideas, and tree has been used for the S-plus routines of Clark and Pregibon ∼[3]
a different acronym — Recursive PARTitioning or rpart — was chosen.
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Figure 1: Revival data

The rpart programs build classification or regression models of a very general
structure using a two stage procedure; the resulting models can be represented as
binary trees. An example is some preliminary data gathered at Stanford on revival
of cardiac arrest patients by paramedics. The goal is to predict which patients
are revivable in the field on the basis of fourteen variables known at or near the
time of paramedic arrival, e.g., sex, age, time from attack to first care, etc. Since
some patients who are not revived on site are later successfully resuscitated at the
hospital, early identification of these “recalcitrant” cases is of considerable clinical
interest.

The resultant model separated the patients into four groups as shown in figure
1, where

X1 = initial heart rhythm
1= VF/VT 2=EMD 3=Asystole 4=Other

X2 = initial response to defibrillation
1=Improved 2=No change 3=Worse

X3 = initial response to drugs
1=Improved 2=No change 3=Worse

The other 11 variables did not appear in the final model. This procedure seems
to work especially well for variables such as X1 , where there is a definite ordering,
but spacings are not necessarily equal.

The tree is built by the following process: first the single variable is found which
best splits the data into two groups (‘best’ will be defined later). The data is
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separated, and then this process is applied separately to each sub-group, and so on
recursively until the subgroups either reach a minimum size (5 for this data) or until
no improvement can be made.

The resultant model is, with a certainty, too complex, and the question arises
as it does with all stepwise procedures of when to stop. The second stage of the
procedure consists of using cross-validation to trim back the full tree. In the medical
example above the full tree had ten terminal regions. A cross validated estimate of
risk was computed for a nested set of subtrees; this final model was that subtree
with the lowest estimate of risk.

2 Notation

The partitioning method can be applied to many different kinds of data. We will
start by looking at the classification problem, which is one of the more instructive
cases (but also has the most complex equations). The sample population consists of
n observations from C classes. A given model will break these observations into k
terminal groups; to each of these groups is assigned a predicted class. In an actual
application, most parameters will be estimated from the data, such estimates are
given by ≈ formulae.

πi i = 1, 2, ..., C prior probabilities of each class

L(i, j) i = 1, 2, ..., C Loss matrix for incorrectly classifying
an i as a j. L(i, i) ≡ 0

A some node of the tree
Note that A represents both a set of individuals in
the sample data, and, via the tree that produced it,
a classification rule for future data.

τ(x) true class of an observation x, where x is the
vector of predictor variables

τ(A) the class assigned to A, if A were to be taken as a
final node

ni, nA number of observations in the sample that are class i,
number of obs in node A

P (A) probability of A (for future observations)
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=
∑C

i=1 πi P{x ∈ A | τ(x) = i}
≈∑C

i=1 πiniA/ni

p(i|A) P{τ(x) = i | x ∈ A} (for future observations)
= πiP{x ∈ A | τ(x) = i}/P{x ∈ A}
≈ πi(niA/ni)/

∑
πi(niA/ni )

R(A) risk of A

=
∑C

i=1 p(i|A)L(i, τ(A))
where τ(A) is chosen to minimize this risk

R(T ) risk of a model (or tree) T

=
∑k

j=1 P (Aj)R(Aj)

where Aj are the terminal nodes of the tree

If L(i, j) = 1 for all i 6= j, and we set the prior probabilities π equal to the
observed class frequencies in the sample then p(i|A) = niA/nA and R(T ) is the
proportion misclassified.

3 Building the tree

3.1 Splitting criteria

If we split a node A into two sons AL and AR (left and right sons), we will have

P (AL)r(AL) + P (AR)r(AR) ≤ P (A)r(A)

(this is proven in [1]). Using this, one obvious way to build a tree is to choose that
split which maximizes ∆r, the decrease in risk. There are defects with this, however,
as the following example shows.

Suppose losses are equal and that the data is 80% class 1’s, and that
some trial split results in AL being 54% class 1’s and AR being 100%
class 1’s. Since the minimum risk prediction for both the left and right
son is τ(AL) = τ(AR) = 1, this split will have ∆r = 0, yet scientifically
this is a very informative division of the sample. In real data with such
a majority, the first few splits very often can do no better than this.

A more serious defect is that the risk reduction is essentially linear. If there were
two competing splits, one separating the data into groups of 85% and 50% purity
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Figure 2: Comparison of Gini and Information indices

respectively, and the other into 70%-70%, we would usually prefer the former, if for
no other reason than because it better sets things up for the next splits.

One way around both of these problems is to use lookahead rules; but these
are computationally very expensive. Instead rpart uses one of several measures of
impurity, or diversity, of a node. Let f be some impurity function and define the
impurity of a node A as

I(A) =
C∑

i=1

f(piA)

where piA is the proportion of those in A that belong to class i for future samples.
Since we would like I(A) =0 when A is pure, f must be concave with f(0) = f(1) =
0.

Two candidates for f are the information index f(p) = −p log(p) and the Gini
index f(p) = p(1 − p). We then use that split with maximal impurity reduction

∆I = p(A)I(A) − p(AL)I(AL) − p(AR)I(AR)

The two impurity functions are plotted in figure (2), with the second plot scaled
so that the maximum for both measures is at 1. For the two class problem the
measures differ only slightly, and will nearly always choose the same split point.
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Another convex criteria not quite of the above class is twoing for which

I(A) = min
C1C2

[f(pC1
) + f(pC2

)]

where C1,C2 is some partition of the C classes into two disjoint sets. If C = 2 twoing
is equivalent to the usual impurity index for f . Surprisingly, twoing can be calculated
almost as efficiently as the usual impurity index. One potential advantage of twoing
is that the output may give the user additional insight concerning the structure of
the data. It can be viewed as the partition of C into two superclasses which are in
some sense the most dissimilar for those observations in A. For certain problems
there may be a natural ordering of the response categories (e.g. level of education),
in which case ordered twoing can be naturally defined, by restricting C1 to be an
interval [1, 2, . . . , k] of classes. Twoing is not part of rpart.

3.2 Incorporating losses

One salutatory aspect of the risk reduction criteria not found in the impurity mea-
sures is inclusion of the loss function. Two different ways of extending the impurity
criteria to also include losses are implemented in CART, the generalized Gini index
and altered priors. The rpart software implements only the altered priors method.

3.2.1 Generalized Gini index

The Gini index has the following interesting interpretation. Suppose an object is
selected at random from one of C classes according to the probabilities (p1, p2, ..., pC)
and is randomly assigned to a class using the same distribution. The probability of
misclassification is

∑

i

∑

j 6=i

pipj =
∑

i

∑

j

pipj −
∑

i

p2
i =

∑

i

1 − p2
i = Gini index for p

Let L(i, j) be the loss of assigning class j to an object which actually belongs to class
i. The expected cost of misclassification is

∑∑
L(i, j)pipj. This suggests defining

a generalized Gini index of impurity by

G(p) =
∑

i

∑

j

L(i, j)pipj

The corresponding splitting criterion appears to be promising for applications
involving variable misclassification costs. But there are several reasonable objections
to it. First, G(p) is not necessarily a concave function of p, which was the motivating
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factor behind impurity measures. More seriously, G symmetrizes the loss matrix
before using it. To see this note that

G(p) = (1/2)
∑∑

[L(i, j) + L(j, i)] pipj

In particular, for two-class problems, G in effect ignores the loss matrix.

3.2.2 Altered priors

Remember the definition of R(A)

R(A) ≡
C∑

i=1

piAL(i, τ(A))

=
C∑

i=1

πiL(i, τ(A))(niA/ni)(n/nA)

Assume there exists π̃ and L̃ be such that

π̃iL̃(i, j) = πiL(i, j) ∀i, j ∈ C

Then R(A) is unchanged under the new losses and priors. If L̃ is proportional to
the zero-one loss matrix then the priors π̃ should be used in the splitting criteria.
This is possible only if L is of the form

L(i, j) =

{
Li i 6= j
0 i = j

in which case

π̃i =
πiLi∑
j πjLj

This is always possible when C = 2, and hence altered priors are exact for the two
class problem. For arbitrary loss matrix of dimension C > 2, rpart uses the above
formula with Li =

∑
j L(i, j).

A second justification for altered priors is this. An impurity index I(A) =∑
f(pi) has its maximum at p1 = p2 = . . . = pC = 1/C. If a problem had, for

instance, a misclassification loss for class 1 which was twice the loss for a class 2 or
3 observation, one would wish I(A) to have its maximum at p1 =1/5, p2 = p3 =2/5,
since this is the worst possible set of proportions on which to decide a node’s class.
The altered priors technique does exactly this, by shifting the pi.

Two final notes
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Figure 3: Classification tree for the Stage C data

• When altered priors are used, they affect only the choice of split. The ordinary
losses and priors are used to compute the risk of the node. The altered priors
simply help the impurity rule choose splits that are likely to be “good” in
terms of the risk.

• The argument for altered priors is valid for both the gini and information
splitting rules.

3.3 Example: Stage C prostate cancer (class method)

This first example is based on a data set of 146 stage C prostate cancer patients
[5]. The main clinical endpoint of interest is whether the disease recurs after initial
surgical removal of the prostate, and the time interval to that progression (if any).
The endpoint in this example is status, which takes on the value 1 if the disease
has progressed and 0 if not. Later we’ll analyze the data using the exp method,
which will take into account time to progression. A short description of each of the
variables is listed below. The main predictor variable of interest in this study was
DNA ploidy, as determined by flow cytometry. For diploid and tetraploid tumors,
the flow cytometric method was also able to estimate the percent of tumor cells
in a G2 (growth) stage of their cell cycle; G2% is systematically missing for most
aneuploid tumors.
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The variables in the data set are

pgtime time to progression, or last follow-up free of progression
pgstat status at last follow-up (1=progressed, 0=censored)
age age at diagnosis
eet early endocrine therapy (1=no, 0=yes)
ploidy diploid/tetraploid/aneuploid DNA pattern
g2 % of cells in G2 phase
grade tumor grade (1-4)
gleason Gleason grade (3-10)

The model is fit by using the rpart function. The first argument of the function
is a model formula, with the ∼ symbol standing for “is modeled as”. The print

function gives an abbreviated output, as for other S models. The plot and text

command plot the tree and then label the plot, the result is shown in figure 3.

> progstat <- factor(stagec$pgstat, levels=0:1, labels=c("No", "Prog"))

> cfit <- rpart(progstat ∼ age + eet + g2 + grade + gleason + ploidy,

data=stagec, method=’class’)

> print(cfit)

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 146 54 No ( 0.6301 0.3699 )

2) grade<2.5 61 9 No ( 0.8525 0.1475 ) *

3) grade>2.5 85 40 Prog ( 0.4706 0.5294 )

6) g2<13.2 40 17 No ( 0.5750 0.4250 )

12) ploidy:diploid,tetraploid 31 11 No ( 0.6452 0.3548 )

24) g2>11.845 7 1 No ( 0.8571 0.1429 ) *

25) g2<11.845 24 10 No ( 0.5833 0.4167 )

50) g2<11.005 17 5 No ( 0.7059 0.2941 ) *

51) g2>11.005 7 2 Prog ( 0.2857 0.7143 ) *

13) ploidy:aneuploid 9 3 Prog ( 0.3333 0.6667 ) *

7) g2>13.2 45 17 Prog ( 0.3778 0.6222 )

14) g2>17.91 22 8 No ( 0.6364 0.3636 )

28) age>62.5 15 4 No ( 0.7333 0.2667 ) *

29) age<62.5 7 3 Prog ( 0.4286 0.5714 ) *

15) g2<17.91 23 3 Prog ( 0.1304 0.8696 ) *

> plot(cfit)

> text(cfit)

• The creation of a labeled factor variable as the response improves the labeling
of the printout.

10



• We have explicitly directed the routine to treat progstat as a categorical vari-
able by asking for method=’class’. (Since progstat is a factor this would have
been the default choice). Since no optional classification parameters are spec-
ified the routine will use the Gini rule for splitting, prior probabilities that are
proportional to the observed data frequencies, and 0/1 losses.

• The child nodes of node x are always 2x and 2x + 1, to help in navigating the
printout (compare the printout to figure 3).

• Other items in the list are the definition of the split used to create a node, the
number of subjects at the node, the loss or error at the node (for this example,
with proportional priors and unit losses this will be the number misclassified),
and the predicted class for the node.

• * indicates that the node is terminal.

• Grades 1 and 2 go to the left, grades 3 and 4 go to the right. The tree is
arranged so that the branches with the largest “average class” go to the right.

4 Pruning the tree

4.1 Definitions

We have built a complete tree, possibly quite large and/or complex, and must now
decide how much of that model to retain. In stepwise regression, for instance, this
issue is addressed sequentially and the fit is stopped when the F test fails to achieve
some level α.

Let T1, T2,....,Tk be the terminal nodes of a tree T. Define

|T | = number of terminal nodes
risk of T = R(T ) =

∑k
i=1 P (Ti)R(Ti)

In comparison to regression, |T | is analogous to the degrees of freedom and R(T ) to
the residual sum of squares.

Now let α be some number between 0 and ∞ which measures the ’cost’ of adding
another variable to the model; α will be called a complexity parameter. Let R(T0)
be the risk for the zero split tree. Define

Rα(T ) = R(T ) + α|T |

to be the cost for the tree, and define Tα to be that subtree of the full model which
has minimal cost. Obviously T0 = the full model and T∞ = the model with no splits
at all. The following results are shown in [1].
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1. If T1 and T2 are subtrees of T with Rα(T1) = Rα(T2), then either T1 is a
subtree of T2 or T2 is a subtree of T1; hence either |T1| < |T2| or |T2| < |T1|.

2. If α > β then either Tα = Tβ or Tα is a strict subtree of Tβ.

3. Given some set of numbers α1, α2, . . . , αm; both Tα1
, . . . , Tαm

and R(Tα1
), . . .,

R(Tαm
) can be computed efficiently.

Using the first result, we can uniquely define Tα as the smallest tree T for which
Rα(T ) is minimized.

Since any sequence of nested trees based on T has at most |T | members, result
2 implies that all possible values of α can be grouped into m intervals, m ≤ |T |

I1 = [0, α1]

I2 = (α1, α2]

...

Im = (αm−1,∞]

where all α ∈ Ii share the same minimizing subtree.

4.2 Cross-validation

Cross-validation is used to choose a best value for α by the following steps:

1. Fit the full model on the data set
compute I1, I2, ..., Im

set β1 = 0
β2 =

√
α1α2

β3 =
√

α2α3
...
βm−1 =

√
αm−2αm−1

βm = ∞
each βi is a ‘typical value’ for its Ii

2. Divide the data set into s groups G1, G2, ..., Gs each of size s/n, and for each
group separately:

• fit a full model on the data set ‘everyone except Gi’ and determine
Tβ1

, Tβ2
, ..., Tβm

for this reduced data set,

• compute the predicted class for each observation in Gi, under each of the
models Tβj

for 1 ≤ j ≤ m,
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• from this compute the risk for each subject.

3. Sum over the Gi to get an estimate of risk for each βj . For that β (complexity
parameter) with smallest risk compute Tβ for the full data set, this is chosen
as the best trimmed tree.

In actual practice, we may use instead the 1-SE rule. A plot of β versus risk often
has an initial sharp drop followed by a relatively flat plateau and then a slow rise.
The choice of β among those models on the plateau can be essentially random. To
avoid this, both an estimate of the risk and its standard error are computed during
the cross-validation. Any risk within one standard error of the achieved minimum
is marked as being equivalent to the minimum (i.e. considered to be part of the
flat plateau). Then the simplest model, among all those “tied” on the plateau, is
chosen.

In the usual definition of cross-validation we would have taken s = n above, i.e.,
each of the Gi would contain exactly one observation, but for moderate n this is
computationally prohibitive. A value of s = 10 has been found to be sufficient, but
users can vary this if they wish.

In Monte-Carlo trials, this method of pruning has proven very reliable for screen-
ing out ‘pure noise’ variables in the data set.

4.3 Example: The Stochastic Digit Recognition Problem

This example is found in section 2.6 of [1], and used as a running example through-
out much of their book. Consider the segments of an unreliable digital readout

1

7

4

5

2 3

6

where each light is correct with probability 0.9, e.g., if the true digit is a 2, the lights
1, 3, 4, 5, and 7 are on with probability 0.9 and lights 2 and 6 are on with probabil-
ity 0.1. Construct test data where Y ∈ {0, 1, ..., 9}, each with proportion 1/10 and
the Xi, i = 1, . . . , 7 are i.i.d. Bernoulli variables with parameter depending on Y.
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Figure 4: Optimally pruned tree for the stochastic digit recognition data

X8−X24 are generated as i.i.d bernoulli P{Xi = 1} = .5, and are independent of Y.
They correspond to imbedding the readout in a larger rectangle of random lights.

A sample of size 200 was generated accordingly and the procedure applied using
the gini index (see 3.2.1) to build the tree. The S-plus code to compute the simulated
data and the fit are shown below.

> n <- 200

> y <- rep(0:9, length=200)

> temp <- c(1,1,1,0,1,1,1,

0,0,1,0,0,1,0,

1,0,1,1,1,0,1,

1,0,1,1,0,1,1,

0,1,1,1,0,1,0,

1,1,0,1,0,1,1,

0,1,0,1,1,1,1,

1,0,1,0,0,1,0,

1,1,1,1,1,1,1,

1,1,1,1,0,1,0)

> lights <- matrix(temp, 10, 7, byrow=T) # The true light pattern 0-9

> temp1 <- matrix(rbinom(n*7, 1, .9), n, 7) # Noisy lights

> temp1 <- ifelse(lights[y+1, ]==1, temp1, 1-temp1)
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> temp2 <- matrix(rbinom(n*17, 1, .5), n, 17) #Random lights

> x <- cbind(temp1, temp2)

The particular data set of this example can be replicated by setting .Random.seed

to c(21, 14, 49, 32, 43, 1, 32, 22, 36, 23, 28, 3) before the call to rbinom. Now we
fit the model:

> temp3 <- rpart.control(xval=10, minbucket=2, minsplit=4, cp=0)

> dfit <- rpart(y ∼ x, method=’class’, control=temp3)

> printcp(dfit)

Classification tree:

rpart(formula = y ∼ x, method = "class", control = temp3)

Variables actually used in tree construction:

[1] x.1 x.10 x.12 x.13 x.15 x.19 x.2 x.20 x.22 x.3 x.4 x.5 x.6 x.7 x.8

Root node error: 180/200 = 0.9

CP nsplit rel error xerror xstd

1 0.1055556 0 1.00000 1.09444 0.0095501

2 0.0888889 2 0.79444 1.01667 0.0219110

3 0.0777778 3 0.70556 0.90556 0.0305075

4 0.0666667 5 0.55556 0.75000 0.0367990

5 0.0555556 8 0.36111 0.56111 0.0392817

6 0.0166667 9 0.30556 0.36111 0.0367990

7 0.0111111 11 0.27222 0.37778 0.0372181

8 0.0083333 12 0.26111 0.36111 0.0367990

9 0.0055556 16 0.22778 0.35556 0.0366498

10 0.0027778 27 0.16667 0.34444 0.0363369

11 0.0013889 31 0.15556 0.36667 0.0369434

12 0.0000000 35 0.15000 0.36667 0.0369434

> fit9 <- prune(dfit, cp=.02)

> plot(fit9, branch=.3, compress=T)

> text(fit9)

This table differs from that in section 3.5 of [1] in several ways, the last two of
which are somewhat important.

• The actual values are different, of course, because of different random number
generators in the two runs.

• The table is printed from the smallest tree (no splits) to the largest one (28
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splits). We find it easier to compare one tree to another when they start at
the same place.

• The number of splits is listed, rather than the number of nodes. The number
of nodes is always 1 + the number of splits.

• For easier reading, the error columns have been scaled so that the first node
has an error of 1. Since in this example the model with no splits must make
180/200 misclassifications, multiply columns 3-5 by 180 to get a result in
terms of absolute error. (Computations are done on the absolute error scale,
and printed on relative scale).

• The complexity parameter column has been similarly scaled.

Looking at the table, we see that the best tree has 10 terminal nodes (9 splits),
based on cross-validation. This subtree is extracted with call to prune and saved in
fit9. The pruned tree is shown in figure 4. Two options have been used in the plot.
The compress option tries to narrow the printout by vertically overlapping portions
of the plot. (It has only a small effect on this particular dendrogram). The branch

option controls the shape of the branches that connect a node to its children. The
section on plotting (9) will discuss this and other options in more detail.

The largest tree, with 35 terminal nodes, correctly classifies 170/200 = 85% of
the observations, but uses several of the random predictors in doing so and seriously
overfits the data. If the number of observations per terminal node (minbucket) had
been set to 1 instead of 2, then every observation would be classified correctly in
the final model, many in terminal nodes of size 1.

5 Missing data

5.1 Choosing the split

Missing values are one of the curses of statistical models and analysis. Most proce-
dures deal with them by refusing to deal with them – incomplete observations are
tossed out. Rpart is somewhat more ambitious. Any observation with values for
the dependent variable and at least one independent variable will participate in the
modeling.

The quantity to be maximized is still

∆I = p(A)I(A) − p(AL)I(AL) − p(AR)I(AR)

The leading term is the same for all variables and splits irrespective of missing
data, but the right two terms are somewhat modified. Firstly, the impurity indices
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I(AR) and I(AL) are calculated only over the observations which are not missing
a particular predictor. Secondly, the two probabilities p(AL) and p(AR) are also
calculated only over the relevant observations, but they are then adjusted so that
they sum to p(A). This entails some extra bookkeeping as the tree is built, but
ensures that the terminal node probabilities sum to 1.

In the extreme case of a variable for which only 2 observations are non-missing,
the impurity of the two sons will both be zero when splitting on that variable. Hence
∆I will be maximal, and this ‘almost all missing’ coordinate is guaranteed to be
chosen as best; the method is certainly flawed in this extreme case. It is difficult to
say whether this bias toward missing coordinates carries through to the non-extreme
cases, however, since a more complete variable also affords for itself more possible
values at which to split.

5.2 Surrogate variables

Once a splitting variable and a split point for it have been decided, what is to
be done with observations missing that variable? One approach is to estimate the
missing datum using the other independent variables; rpart uses a variation of this
to define surrogate variables.

As an example, assume that the split (age <40, age ≥40) has been chosen. The
surrogate variables are found by re-applying the partitioning algorithm (without
recursion) to predict the two categories ‘age <40’ vs. ‘age ≥40’ using the other
independent variables.

For each predictor an optimal split point and a misclassification error are com-
puted. (Losses and priors do not enter in — none are defined for the age groups —
so the risk is simply #misclassified / n.) Also evaluated is the blind rule ‘go with
the majority’ which has misclassification error min(p, 1 − p) where

p = (# in A with age < 40) / nA.

The surrogates are ranked, and any variables which do no better than the blind rule
are discarded from the list.

Assume that the majority of subjects have age ≤ 40 and that there is another
variable x which is uncorrelated to age; however, the subject with the largest value
of x is also over 40 years of age. Then the surrogate variable x < max versus
x ≥ max will have one less error that the blind rule, sending 1 subject to the right
and n− 1 to the left. A continuous variable that is completely unrelated to age has
probability 1− p2 of generating such a trim-one-end surrogate by chance alone. For
this reason the rpart routines impose one more constraint during the construction
of the surrogates: a candidate split must send at least 2 observations to the left and
at least 2 to the right.
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Any observation which is missing the split variable is then classified using the
first surrogate variable, or if missing that, the second surrogate is used, and etc. If
an observation is missing all the surrogates the blind rule is used. Other strategies
for these ‘missing everything’ observations can be convincingly argued, but there
should be few or no observations of this type (we hope).

5.3 Example: Stage C prostate cancer (cont.)

Let us return to the stage C prostate cancer data of the earlier example. For a
more detailed listing of the rpart object, we use the summary function. It includes
the information from the CP table (not repeated below), plus information about
each node. It is easy to print a subtree based on a different cp value using the cp

option. Any value between 0.0555 and 0.1049 would produce the same result as is
listed below, that is, the tree with 3 splits. Because the printout is long, the file

option of summary.rpart is often useful.

> printcp(fit)

Classification tree:

rpart(formula = progstat ∼ age + eet + g2 + grade + gleason + ploidy,

data = stagec)

Variables actually used in tree construction:

[1] age g2 grade ploidy

Root node error: 54/146 = 0.36986

CP nsplit rel error xerror xstd

1 0.104938 0 1.00000 1.0000 0.10802

2 0.055556 3 0.68519 1.1852 0.11103

3 0.027778 4 0.62963 1.0556 0.10916

4 0.018519 6 0.57407 1.0556 0.10916

5 0.010000 7 0.55556 1.0556 0.10916

> summary(cfit,cp=.06)

Node number 1: 146 observations, complexity param=0.1049

predicted class= No expected loss= 0.3699

class counts: 92 54

probabilities: 0.6301 0.3699

left son=2 (61 obs) right son=3 (85 obs)

Primary splits:

grade < 2.5 to the left, improve=10.360, (0 missing)
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gleason < 5.5 to the left, improve= 8.400, (3 missing)

ploidy splits as LRR, improve= 7.657, (0 missing)

g2 < 13.2 to the left, improve= 7.187, (7 missing)

age < 58.5 to the right, improve= 1.388, (0 missing)

Surrogate splits:

gleason < 5.5 to the left, agree=0.8630, (0 split)

ploidy splits as LRR, agree=0.6438, (0 split)

g2 < 9.945 to the left, agree=0.6301, (0 split)

age < 66.5 to the right, agree=0.5890, (0 split)

Node number 2: 61 observations

predicted class= No expected loss= 0.1475

class counts: 52 9

probabilities: 0.8525 0.1475

Node number 3: 85 observations, complexity param=0.1049

predicted class= Prog expected loss= 0.4706

class counts: 40 45

probabilities: 0.4706 0.5294

left son=6 (40 obs) right son=7 (45 obs)

Primary splits:

g2 < 13.2 to the left, improve=2.1780, (6 missing)

ploidy splits as LRR, improve=1.9830, (0 missing)

age < 56.5 to the right, improve=1.6600, (0 missing)

gleason < 8.5 to the left, improve=1.6390, (0 missing)

eet < 1.5 to the right, improve=0.1086, (1 missing)

Surrogate splits:

ploidy splits as LRL, agree=0.9620, (6 split)

age < 68.5 to the right, agree=0.6076, (0 split)

gleason < 6.5 to the left, agree=0.5823, (0 split)

.

.

.

• There are 54 progressions (class 1) and 94 non-progressions, so the first node
has an expected loss of 54/146 ≈ 0.37. (The computation is this simple only
for the default priors and losses).

• Grades 1 and 2 go to the left, grades 3 and 4 to the right. The tree is arranged
so that the “more severe” nodes go to the right.

• The improvement is n times the change in impurity index. In this instance,
the largest improvement is for the variable grade, with an improvement of
10.36. The next best choice is Gleason score, with an improvement of 8.4.
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The actual values of the improvement are not so important, but their relative
size gives an indication of the comparative utility of the variables.

• Ploidy is a categorical variable, with values of diploid, tetraploid, and aneu-
ploid, in that order. (To check the order, type table(stagec$ploidy)). All
three possible splits were attempted: aneuploid+diploid vs. tetraploid, ane-
uploid+tetraploid vs. diploid, and aneuploid vs. diploid + tetraploid. The
best split sends diploid to the right and the others to the left.

• The 2 by 2 table of diploid/non-diploid vs grade= 1-2/3-4 has 64% of the
observations on the diagonal.

1-2 3-4

diploid 38 29
tetraploid 22 46
aneuploid 1 10

• For node 3, the primary split variable is missing on 6 subjects. All 6 are split
based on the first surrogate, ploidy. Diploid and aneuploid tumors are sent to
the left, tetraploid to the right. As a surrogate, eet was no better than 45/85
(go with the majority), and was not retained.

g2 < 13.2 g2 > 13.2

Diploid/aneuploid 71 1
Tetraploid 3 64

6 Further options

6.1 Program options

The central fitting function is rpart, whose main arguments are

• formula: the model formula, as in lm and other S model fitting functions. The
right hand side may contain both continuous and categorical (factor) terms.
If the outcome y has more than two levels, then categorical predictors must
be fit by exhaustive enumeration, which can take a very long time.

• data, weights, subset: as for other S models. Weights are not yet supported,
and will be ignored if present.

• method: the type of splitting rule to use. Options at this point are classification,
anova, Poisson, and exponential.
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• parms: a list of method specific optional parameters. For classification, the list
can contain any of: the vector of prior probabilities (component prior), the
loss matrix (component loss) or the splitting index (component split). The
priors must be positive and sum to 1. The loss matrix must have zeros on the
diagonal and positive off-diagonal elements. The splitting index can be ‘gini’
or ‘information’.

• na.action: the action for missing values. The default action for rpart is
na.rpart, this default is not overridden by the options(na.action) global op-
tion. The default action removes only those rows for which either the response
y or all of the predictors are missing. This ability to retain partially missing
observations is perhaps the single most useful feature of rpart models.

• control: a list of control parameters, usually the result of the rpart.control

function. The list must contain

– minsplit: The minimum number of observations in a node for which
the routine will even try to compute a split. The default is 20. This
parameter can save computation time, since smaller nodes are almost
always pruned away by cross-validation.

– minbucket: The minimum number of observations in a terminal node.
This defaults to minsplit/3.

– maxcompete: It is often useful in the printout to see not only the variable
that gave the best split at a node, but also the second, third, etc best.
This parameter controls the number that will be printed. It has no effect
on computational time, and a small effect on the amount of memory used.
The default is 4.

– xval: The number of cross-validations to be done. Usually set to zero
during exploratory phases of the analysis. A value of 10, for instance,
increases the compute time to 11-fold over a value of 0.

– maxsurrogate: The maximum number of surrogate variables to retain at
each node. (No surrogate that does worse than “go with the majority”
is printed or used). Setting this to zero will cut the computation time
in half, and set usesurrogate to zero. The default is 5. Surrogates give
different information than competitor splits. The competitor list asks
“which other splits would have as many correct classifications”, surro-
gates ask “which other splits would classify the same subjects in the
same way”, which is a harsher criteria.

– usesurrogate: A value of usesurrogate=2, the default, splits subjects in
the way described previously. This is similar to CART. If the value is 0,
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then a subject who is missing the primary split variable does not progress
further down the tree. A value of 1 is intermediate: all surrogate variables
except “go with the majority” are used to send a case further down the
tree.

– cp: The threshold complexity parameter.

The complexity parameter cp is, like minsplit, an advisory parameter, but is
considerably more useful. It is specified according to the formula

Rcp(T ) ≡ R(T ) + cp ∗ |T | ∗ R(T1)

where T1 is the tree with no splits, |T | is the number of splits for a tree, and R is
the risk. This scaled version is much more user friendly than the original CART
formula (4.1) since it is unitless. A value of cp=1 will always result in a tree with
no splits. For regression models (see next section) the scaled cp has a very direct
interpretation: if any split does not increase the overall R2 of the model by at
least cp (where R2 is the usual linear-models definition) then that split is decreed
to be, a priori, not worth pursuing. The program does not split said branch any
further, and saves considerable computational effort. The default value of .01 has
been reasonably successful at ‘pre-pruning’ trees so that the cross-validation step
need only remove 1 or 2 layers, but it sometimes overprunes, particularly for large
data sets.

6.2 Example: Consumer Report Auto Data

A second example using the class method demonstrates the outcome for a response
with multiple (> 2) categories. We also explore the difference between Gini and in-
formation splitting rules. The dataset cu.summary contains a collection of variables
from the April, 1990 Consumer Reports summary on 117 cars. For our purposes,
car Reliability will be treated as the response. The variables are:

Reliability an ordered factor (contains NAs):
Much worse < worse < average < better < Much Better

Price numeric: list price in dollars, with standard equipment
Country factor: country where car manufactured
Mileage numeric: gas mileage in miles/gallon, contains NAs
Type factor: Small, Sporty, Compact, Medium, Large, Van

In the analysis we are treating reliability as an unordered outcome. Nodes po-
tentially can be classified as Much worse, worse, average, better, or Much better,
though there are none that are labelled as just “better”. The 32 cars with missing
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Figure 5: Displays the rpart-based model relating automobile Reliability to car type, price,
and country of origin. The figure on the left uses the gini splitting index and the figure on
the right uses the information splitting index.

response (listed as NA) were not used in the analysis. Two fits are made, one using
the Gini index and the other the information index.

> fit1 <- rpart(Reliability ∼ Price + Country + Mileage + Type,

data=cu.summary, parms=list(split=’gini’))

> fit2 <- rpart(Reliability ∼ Price + Country + Mileage + Type,

data=cu.summary, parms=list(split=’information’))

> par(mfrow=c(1,2))

> plot(fit1); text(fit1,use.n=T,cex=.9)

> plot(fit2); text(fit2,use.n=T,cex=.9)

The first two nodes from the Gini tree are

Node number 1: 85 observations, complexity param=0.3051

predicted class= average expected loss= 0.6941

class counts: 18 12 26 8 21

probabilities: 0.2118 0.1412 0.3059 0.0941 0.2471

left son=2 (58 obs) right son=3 (27 obs)

Primary splits:
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Country splits as ---LRRLLLL, improve=15.220, (0 missing)

Type splits as RLLRLL, improve= 4.288, (0 missing)

Price < 11970 to the right, improve= 3.200, (0 missing)

Mileage < 24.5 to the left, improve= 2.476, (36 missing)

Node number 2: 58 observations, complexity param=0.08475

predicted class= average expected loss= 0.6034

class counts: 18 12 23 5 0

probabilities: 0.3103 0.2069 0.3966 0.0862 0.0000

left son=4 (9 obs) right son=5 (49 obs)

Primary splits:

Type splits as RRRRLR, improve=3.187, (0 missing)

Price < 11230 to the left, improve=2.564, (0 missing)

Mileage < 24.5 to the left, improve=1.802, (30 missing)

Country splits as ---L--RLRL, improve=1.329, (0 missing)

The fit for the information splitting rule is

Node number 1: 85 observations, complexity param=0.3051

predicted class= average expected loss= 0.6941

class counts: 18 12 26 8 21

probabilities: 0.2118 0.1412 0.3059 0.0941 0.2471

left son=2 (58 obs) right son=3 (27 obs)

Primary splits:

Country splits as ---LRRLLLL, improve=38.540, (0 missing)

Type splits as RLLRLL, improve=11.330, (0 missing)

Price < 11970 to the right, improve= 6.241, (0 missing)

Mileage < 24.5 to the left, improve= 5.548, (36 missing)

Node number 2: 58 observations, complexity param=0.0678

predicted class= average expected loss= 0.6034

class counts: 18 12 23 5 0

probabilities: 0.3103 0.2069 0.3966 0.0862 0.0000

left son=4 (36 obs) right son=5 (22 obs)

Primary splits:

Type splits as RLLRLL, improve=9.281, (0 missing)

Price < 11230 to the left, improve=5.609, (0 missing)

Mileage < 24.5 to the left, improve=5.594, (30 missing)

Country splits as ---L--RRRL, improve=2.891, (0 missing)

Surrogate splits:

Price < 10970 to the right, agree=0.8793, (0 split)

Country splits as ---R--RRRL, agree=0.7931, (0 split)

The first 3 countries (Brazil, England, France) had only one or two cars in
the listing, all of which were missing the reliability variable. There are no entries
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for these countries in the first node, leading to the − symbol for the rule. The
information measure has larger “improvements”, consistent with the difference in
scaling between the information and Gini criteria shown in figure 2, but the relative
merits of different splits are fairly stable.

The two rules do not choose the same primary split at node 2. The data at this
point are

Compact Large Medium Small Sporty Van
Much worse 2 2 4 2 7 1

worse 5 0 4 3 0 0
average 3 5 8 2 2 3
better 2 0 0 3 0 0

Much better 0 0 0 0 0 0

Since there are 6 different categories, all 25 = 32 different combinations were ex-
plored, and as it turns out there are several with a nearly identical improvement.
The Gini and information criteria make different “random” choices from this set
of near ties. For the Gini index, Sporty vs others and Compact/Small vs others
have improvements of 3.19 and 3.12, respectively. For the information index, the
improvements are 6.21 versus 9.28. Thus the Gini index picks the first rule and
information the second. Interestingly, the two splitting criteria arrive at exactly the
same final nodes, for the full tree, although by different paths. (Compare the class
counts of the terminal nodes).

We have said that for a categorical predictor with m levels, all 2m−1 different
possible splits are tested.. When there are a large number of categories for the
predictor, the computational burden of evaluating all of these subsets can become
large. For instance, the call rpart(Reliability ∼ ., data=car.all) does not return
for a long, long time: one of the predictors in that data set is a factor with 79 levels!
Luckily, for any ordered outcome there is a computational shortcut that allows the
program to find the best split using only m − 1 comparisons. This includes the
classification method when there are only two categories, along with the anova and
Poisson methods to be introduced later.

6.3 Example: Kyphosis data

A third class method example explores the parameters prior and loss. The dataset
kyphosis has 81 rows representing data on 81 children who have had corrective spinal
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Figure 6: Displays the rpart-based models for the presence/absence of kyphosis. The figure
on the left uses the default prior (0.79,0.21) and loss; the middle figure uses the user-defined
prior (0.65,0.35) and default loss; and the third figure uses the default prior and the used-
defined loss L(1, 2) = 3, L(2, 1) = 2).

surgery. The variables are:

Kyphosis factor: postoperative deformity is present/absent
Age numeric: age of child in months
Number numeric: number of vertebrae involved in operation
Start numeric: beginning of the range of vertebrae involved

> lmat <- matrix(c(0,4,3,0), nrow=2, ncol=2, byrow=F)

> fit1 <- rpart(Kyphosis ∼ Age + Number + Start,data=kyphosis)

> fit2 <- rpart(Kyphosis ∼ Age + Number + Start,data=kyphosis,

parms=list(prior=c(.65,.35)))

> fit3 <- rpart(Kyphosis ∼ Age + Number + Start,data=kyphosis,

parms=list(loss=lmat))

> par(mfrow=c(1,3))

> plot(fit1); text(fit1,use.n=T,all=T)

> plot(fit2); text(fit2,use.n=T,all=T)

> plot(fit3); text(fit3,use.n=T,all=T)
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This example shows how even the initial split changes depending on the prior
and loss that are specified. The first and third fits have the same initial split (Start
< 8.5), but the improvement differs. The second fit splits Start at 12.5 which moves
46 people to the left instead of 62.

Looking at the leftmost tree, we see that the sequence of splits on the left hand
branch yields only a single node classified as present. For any loss greater than 4
to 3, the routine will instead classify this node as absent, and the entire left side of
the tree collapses, as seen in the right hand figure. This is not unusual — the most
common effect of alternate loss matrices is to change the amount of pruning in the
tree, more pruning in some branches and less in others, rather than to change the
choice of splits.

The first node from the default tree is

Node number 1: 81 observations, complexity param=0.1765

predicted class= absent expected loss= 0.2099

class counts: 64 17

probabilities: 0.7901 0.2099

left son=2 (62 obs) right son=3 (19 obs)

Primary splits:

Start < 8.5 to the right, improve=6.762, (0 missing)

Number < 5.5 to the left, improve=2.867, (0 missing)

Age < 39.5 to the left, improve=2.250, (0 missing)

Surrogate splits:

Number < 6.5 to the left, agree=0.8025, (0 split)

The fit using the prior (0.65,0.35) is

Node number 1: 81 observations, complexity param=0.302

predicted class= absent expected loss= 0.35

class counts: 64 17

probabilities: 0.65 0.35

left son=2 (46 obs) right son=3 (35 obs)

Primary splits:

Start < 12.5 to the right, improve=10.900, (0 missing)

Number < 4.5 to the left, improve= 5.087, (0 missing)

Age < 39.5 to the left, improve= 4.635, (0 missing)

Surrogate splits:

Number < 3.5 to the left, agree=0.6667, (0 split)

And first split under 4/3 losses is
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Node number 1: 81 observations, complexity param=0.01961

predicted class= absent expected loss= 0.6296

class counts: 64 17

probabilities: 0.7901 0.2099

left son=2 (62 obs) right son=3 (19 obs)

Primary splits:

Start < 8.5 to the right, improve=5.077, (0 missing)

Number < 5.5 to the left, improve=2.165, (0 missing)

Age < 39.5 to the left, improve=1.535, (0 missing)

Surrogate splits:

Number < 6.5 to the left, agree=0.8025, (0 split)

7 Regression

7.1 Definition

Up to this point the classification problem has been used to define and motivate our
formulae. However, the partitioning procedure is quite general and can be extended
by specifying 5 “ingredients”:

• A splitting criterion, which is used to decide which variable gives the best
split. For classification this was either the Gini or log-likelihood function. In
the anova method the splitting criteria is SST − (SSL + SSR), where SST =∑

(yi − ȳ)2 is the sum of squares for the node, and SSR, SSL are the sums of
squares for the right and left son, respectively. This is equivalent to chosing
the split to maximize the between-groups sum-of-squares in a simple analysis
of variance. This rule is identical to the regression option for tree.

• A summary statistic or vector, which is used to describe a node. The first
element of the vector is considered to be the fitted value. For the anova
method this is the mean of the node; for classification the response is the
predicted class followed by the vector of class probabilities.

• The error of a node. This will be the variance of y for anova, and the predicted
loss for classification.

• The prediction error for a new observation, assigned to the node. For anova
this is (ynew − ȳ).

• Any necessary initialization.

The anova method leads to regression trees; it is the default method if y a simple
numeric vector, i.e., not a factor, matrix, or survival object.
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7.2 Example: Consumer Report car data

The dataset car.all contains a collection of variables from the April, 1990 Consumer
Reports; it has 36 variables on 111 cars. Documentation may be found in the S-Plus
manual. We will work with a subset of 23 of the variables, created by the first two
lines of the example below. We will use Price as the response. This data set is
a good example of the usefulness of the missing value logic in rpart: most of the
variables are missing on only 3-5 observations, but only 42/111 have a complete
subset.

> cars <- car.all[, c(1:12, 15:17, 21, 28, 32:36)]

> cars$Eng.Rev <- as.numeric(as.character(car.all$Eng.Rev2))

> fit3 <- rpart(Price ∼ ., data=cars)

> fit3

node), split, n, deviance, yval

* denotes terminal node

1) root 105 7118.00 15.810

2) Disp.<156 70 1492.00 11.860

4) Country:Brazil,Japan,Japan/USA,Korea,Mexico,USA 58 421.20 10.320

8) Type:Small 21 50.31 7.629 *

9) Type:Compact,Medium,Sporty,Van 37 132.80 11.840 *

5) Country:France,Germany,Sweden 12 270.70 19.290 *

3) Disp.>156 35 2351.00 23.700

6) HP.revs<5550 24 980.30 20.390

12) Disp.<267.5 16 396.00 17.820 *

13) Disp.>267.5 8 267.60 25.530 *

7) HP.revs>5550 11 531.60 30.940 *

> printcp(fit3)

Regression tree:

rpart(formula = Price ∼ ., data = cars)

Variables actually used in tree construction:

[1] Country Disp. HP.revs Type

Root node error: 7.1183e9/105 = 6.7793e7

CP nsplit rel error xerror xstd

1 0.460146 0 1.00000 1.02413 0.16411

2 0.117905 1 0.53985 0.79225 0.11481

3 0.044491 3 0.30961 0.60042 0.10809

4 0.033449 4 0.26511 0.58892 0.10621
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5 0.010000 5 0.23166 0.57062 0.11782

Only 4 of 22 predictors were actually used in the fit: engine displacement in cubic
inches, country of origin, type of vehicle, and the revolutions for maximum horse-
power (the “red line” on a tachometer).

• The relative error is 1− R2, similar to linear regression. The xerror is related
to the PRESS statistic. The first split appears to improve the fit the most.
The last split adds little improvement to the apparent error, and increases the
cross-validated error.

• The 1-SE rule would choose a tree with 3 splits.

• This is a case where the default cp value of .01 may have overpruned the
tree, since the cross-validated error is barely at a minimum. A rerun with the
cp threshold at .002 gave a maximum tree size of 8 splits, with a minimun
cross-validated error for the 5 split model.

• For any CP value between 0.46015 and 0.11791 the best model has one split;
for any CP value between 0.11791 and 0.04449 the best model is with 2 splits;
and so on.

The print command also recognizes the cp option, which allows the user to see
which splits are the most important.

> print(fit3,cp=.10)

node), split, n, deviance, yval

* denotes terminal node

1) root 105 7.118e+09 15810

2) Disp.<156 70 1.492e+09 11860

4) Country:Brazil,Japan,Japan/USA,Korea,Mexico,USA 58 4.212e+08 10320 *

5) Country:France,Germany,Sweden 12 2.707e+08 19290 *

3) Disp.>156 35 2.351e+09 23700

6) HP.revs<5550 24 9.803e+08 20390 *

7) HP.revs>5550 11 5.316e+08 30940 *

The first split on displacement partitions the 105 observations into groups of
70 and 35 (nodes 2 and 3) with mean prices of 11,860 and 23,700. The deviance
(corrected sum-of-squares) at these 2 nodes are 1.49x109 and 2.35x109, respectively.
More detailed summarization of the splits is again obtained by using the function
summary.rpart.
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> summary(fit3, cp=.10)

Node number 1: 105 observations, complexity param=0.4601

mean=15810 , SS/n=67790000

left son=2 (70 obs) right son=3 (35 obs)

Primary splits:

Disp. < 156 to the left, improve=0.4601, (0 missing)

HP < 154 to the left, improve=0.4549, (0 missing)

Tank < 17.8 to the left, improve=0.4431, (0 missing)

Weight < 2890 to the left, improve=0.3912, (0 missing)

Wheel.base < 104.5 to the left, improve=0.3067, (0 missing)

Surrogate splits:

Weight < 3095 to the left, agree=0.9143, (0 split)

HP < 139 to the left, agree=0.8952, (0 split)

Tank < 17.95 to the left, agree=0.8952, (0 split)

Wheel.base < 105.5 to the left, agree=0.8571, (0 split)

Length < 185.5 to the left, agree=0.8381, (0 split)

Node number 2: 70 observations, complexity param=0.1123

mean=11860 , SS/n=21310000

left son=4 (58 obs) right son=5 (12 obs)

Primary splits:

Country splits as L-RRLLLLRL, improve=0.5361, (0 missing)

Tank < 15.65 to the left, improve=0.3805, (0 missing)

Weight < 2568 to the left, improve=0.3691, (0 missing)

Type splits as R-RLRR, improve=0.3650, (0 missing)

HP < 105.5 to the left, improve=0.3578, (0 missing)

Surrogate splits:

Tank < 17.8 to the left, agree=0.8571, (0 split)

Rear.Seating < 28.75 to the left, agree=0.8429, (0 split)

.

.

.

• The improvement listed is the percent change in SS for this split, i.e., 1 −
(SSright + SSleft)/SSparent.

• The weight and displacement are very closely related, as shown by the surro-
gate split agreement of 91%.

• Not all types are represented in node 2, e.g., there are no representatives from
England (the second category). This is indicated by a - in the list of split
directions.
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Figure 7: A anova tree for the car.test.frame dataset. The label of each node indicates the
mean Price for the cars in that node.

> plot(fit3)

> text(fit3,use.n=T)

As always, a plot of the fit is useful for understanding the rpart object. In this
plot, we use the option use.n=T to add the number of cars in each node. (The default
is for only the mean of the response variable to appear). Each individual split is
ordered to send the less expensive cars to the left.

Other plots can be used to help determine the best cp value for this model. The
function rsq.rpart plots the jacknifed error versus the number of splits. Of interest
is the smallest error, but any number of splits within the “error bars” (1-SE rule)
are considered a reasonable number of splits (in this case, 1 or 2 splits seem to be
sufficient). As is often true with modeling, simpler is often better. Another useful
plot is the R2 versus number of splits. The (1 - apparent error) and (1 - relative
error) show how much is gained with additional splits. This plot highlights the
differences between the R2 values.

Finally, it is possible to look at the residuals from this model, just as with a
regular linear regression fit, as shown in the following figure.

> plot(predict(fit3),resid(fit3))

> axis(3,at=fit3$frame$yval[fit3$frame$var==’<leaf>’],
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Figure 8: Both plots were obtained using the function rsq.rpart(fit3). The figure on the
left shows that the first split offers the most information. The figure on the right suggests
that the tree should be pruned to include only 1 or 2 splits.
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Figure 9: This plot shows the (observed-expected) cost of cars versus the predicted cost
of cars based on the nodes/leaves in which the cars landed. There appears to be more
variability in node 7 than in some of the other leaves.
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labels=row.names(fit3$frame)[fit3$frame$var==’<leaf>’])

> mtext(’leaf number’,side=3, line=3)

> abline(h=0)

7.3 Example: Stage C data (anova method)

The stage C prostate cancer data of the earlier section can also be fit using the
anova method, by treating the status variable as though it were continuous.

> cfit2 <- rpart(pgstat ∼ age + eet + g2 + grade + gleason + ploidy,

data=stagec)

> printcp(cfit2)

Regression tree:

rpart(formula = pgstat ∼ age + eet + g2 + grade + gleason + ploidy, data =

stagec)

Variables actually used in tree construction:

[1] age g2 grade ploidy

Root node error: 34.027/146 = 0.23306

CP nsplit rel error xerror xstd

1 0.152195 0 1.00000 1.01527 0.045470

2 0.054395 1 0.84781 0.86670 0.063447

3 0.032487 3 0.73901 0.86524 0.075460

4 0.019932 4 0.70653 0.95702 0.085390

5 0.013027 8 0.63144 1.05606 0.092566

6 0.010000 9 0.61841 1.07727 0.094466

> print(cfit2, cp=.03)

node), split, n, deviance, yval

* denotes terminal node

1) root 146 34.030 0.3699

2) grade<2.5 61 7.672 0.1475

4) g2<13.19 40 1.900 0.0500 *

5) g2>13.19 21 4.667 0.3333 *

3) grade>2.5 85 21.180 0.5294

6) g2<13.2 40 9.775 0.4250 *

7) g2>13.2 45 10.580 0.6222

14) g2>17.91 22 5.091 0.3636 *

15) g2<17.91 23 2.609 0.8696 *
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If this tree is compared to the earlier results, we see that it has chosen exactly
the same variables and split points as before. The only addition is further splitting
of node 2, the upper left “No” of figure 3. This is no accident, for the two class case
the Gini splitting rule reduces to 2p(1 − p), which is the variance of a node.

The two methods differ in their evaluation and pruning, however. Note that
nodes 4 and 5, the two children of node 2, contain 2/40 and 7/21 progressions,
respectively. For classification purposes both nodes have the same predicted value
(No) and the split will be discarded since the error (# of misclassifications) with
and without the split is identical. In the regression context the two predicted values
of .05 and .33 are different — the split has identified a nearly pure subgroup of
significant size.

This setup is known as odds regression, and may be a more sensible way to
evaluate a split when the emphasis of the model is on understanding/explanation
rather than on prediction error per se. Extension of this rule to the multiple class
problem is appealing, but has not yet been implemented in rpart.

8 Poisson regression

8.1 Definition

The Poisson splitting method attempts to extend rpart models to event rate data.
The model in this case is

λ = f(x)

where λ is an event rate and x is some set of predictors. As an example consider
hip fracture rates. For each county in the United States we can obtain

• number of fractures in patients age 65 or greater (from Medicare files)

• population of the county (US census data)

• potential predictors such as

– socio-economic indicators

– number of days below freezing

– ethnic mix

– physicians/1000 population

– etc.

Such data would usually be approached by using Poisson regression; can we find
a tree based analogue? In adding criteria for rates regression to this ensemble, the
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guiding principle was the following: the between groups sum-of-squares is not a very
robust measure, yet tree based regression works very well. So do the simplest thing
possible.

Let ci be the observed event count for observation i, ti be the observation time,
and xij , j = 1, . . . , p be the predictors. The y variable for the program will be a 2
column matrix.

Splitting criterion: The likelihood ratio test for two Poisson groups

Dparent −
(
Dleft son + Dright son

)

Summary statistics: The observed event rate and the number of events.

λ̂ =
# events

total time
=

∑
ci∑
ti

Error of a node: The within node deviance.

D =
∑

[
ci log

(
ci

λ̂ti

)
− (ci − λ̂ti)

]

Prediction error: The deviance contribution for a new observation, using λ̂ of
the node as the predicted rate.

8.2 Improving the method

There is a problem with the criterion just proposed, however: cross-validation of a
model often produces an infinite value for the deviance. The simplest case where
this occurs is easy to understand. Assume that some terminal node of the tree has
20 subjects, but only 1 of the 20 has experienced any events. The cross-validated
error (deviance) estimate for that node will have one subset — the one where the
subject with an event is left out — which has λ̂ = 0. When we use the prediction
for the 10% of subjects who were set aside, the deviance contribution of the subject
with an event is

. . . + ci log(ci/0) + . . .

which is infinite since ci > 0. The problem is that when λ̂ = 0 the occurrence of an
event is infinitely improbable, and, using the deviance measure, the corresponding
model is then infinitely bad.

One might expect this phenomenon to be fairly rare, but unfortunately it is not
so. One given of tree-based modeling is that a right-sized model is arrived at by
purposely over-fitting the data and then pruning back the branches. A program
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that aborts due to a numeric exception during the first stage is uninformative to
say the least. Of more concern is that this edge effect does not seem to be limited
to the pathologic case detailed above. Any near approach to the boundary value
λ = 0 leads to large values of the deviance, and the procedure tends to discourage
any final node with a small number of events.

An ad hoc solution is to use the revised estimate

ˆ̂
λ = max

(
λ̂,

k
∑

ti

)

where k is 1/2 or 1/6. That is, pure nodes are given a partial event. (This is similar
to the starting estimates used in the GLM program for a Poisson regression.) This
is unsatisfying, however, and we propose instead using a shrinkage estimate.

Assume that the true rates λj for the leaves of the tree are random values from
a Gamma(µ, σ) distribution. Set µ to the observed overall event rate

∑
ci/
∑

ti,
and let the user choose as a prior the coefficient of variation k = σ/µ. A value of
k = 0 represents extreme pessimism (“the leaf nodes will all give the same result”),
whereas k = ∞ represents extreme optimism. The Bayes estimate of the event rate
for a node works out to be

λ̂k =
α +

∑
ci

β +
∑

ti
,

where α = 1/k2 and β = α/λ̂.
This estimate is scale invariant, has a simple interpretation, and shrinks least

those nodes with a large amount of information. In practice, a value of k = 10 does
essentially no shrinkage. For method=’poisson’, the optional parameters list is the
single number k, with a default value of 1.

8.3 Example: solder data

The solder data frame, as explained in the Splus help file, is a dataset with 900
observations which are the results of an experiment varying 5 factors relevant to the
wave-soldering procedure for mounting components on printed circuit boards. The
response variable, skips, is a count of how many solder skips appeared to a visual
inspection. The other variables are listed below:

Opening factor: amount of clearance around the mounting pad (S < M < L)
Solder factor: amount of solder used (Thin < Thick)
Mask factor: Type of solder mask used (5 possible)
PadType factor: Mounting pad used (10 possible)
Panel factor: panel (1, 2 or 3) on board being counted
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In this call, the rpart.control options are modified: maxcompete = 2 means that
only 2 other competing splits are listed (default is 4); cp = .05 means that a smaller
tree will be built initially (default is .01). The y variable for Poisson partitioning
may be a two column matrix containing the observation time in column 1 and the
number of events in column 2, or it may be a vector of event counts alone.

fit <- rpart(skips ∼ Opening + Solder + Mask + PadType

+ Panel, data=solder, method=’poisson’,

control=rpart.control(cp=.05, maxcompete=2))

The print command summarizes the tree, as in the previous examples.

node), split, n, deviance, yval

* denotes terminal node

1) root 900 8788.0 5.530

2) Opening:M,L 600 2957.0 2.553

4) Mask:A1.5,A3,B3 420 874.4 1.033 *

5) Mask:A6,B6 180 953.1 6.099 *

3) Opening:S 300 3162.0 11.480

6) Mask:A1.5,A3 150 652.6 4.535 *

7) Mask:A6,B3,B6 150 1155.0 18.420 *

• The response value is the expected event rate (with a time variable), or in this
case the expected number of skips. The values are shrunk towards the global
estimate of 5.53 skips/observation.

• The deviance is the same as the null deviance (sometimes called the residual
deviance) that you’d get when calculating a Poisson glm model for the given
subset of data.

> summary(fit,cp=.10)

Call:

rpart(formula = skips ∼ Opening + Solder + Mask + PadType + Panel, data =

solder, method = "poisson", control = rpart.control(cp = 0.05,

maxcompete = 2))

CP nsplit rel error xerror xstd

1 0.3038 0 1.0000 1.0030 0.05228

2 0.1541 1 0.6962 0.7005 0.03282

3 0.1285 2 0.5421 0.5775 0.02746
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4 0.0500 3 0.4137 0.4200 0.01976

Node number 1: 900 observations, complexity param=0.3038

events=4977, estimated rate=5.53 , deviance/n=9.765

left son=2 (600 obs) right son=3 (300 obs)

Primary splits:

Opening splits as RLL, improve=2670, (0 missing)

Mask splits as LLRLR, improve=2162, (0 missing)

Solder splits as RL, improve=1168, (0 missing)

Node number 2: 600 observations, complexity param=0.1285

events=1531, estimated rate=2.553 , deviance/n=4.928

left son=4 (420 obs) right son=5 (180 obs)

Primary splits:

Mask splits as LLRLR, improve=1129.0, (0 missing)

Opening splits as -RL, improve= 250.8, (0 missing)

Solder splits as RL, improve= 219.8, (0 missing)

Node number 3: 300 observations, complexity param=0.1541

events=3446, estimated rate=11.48 , deviance/n=10.54

left son=6 (150 obs) right son=7 (150 obs)

Primary splits:

Mask splits as LLRRR, improve=1354.0, (0 missing)

Solder splits as RL, improve= 976.9, (0 missing)

PadType splits as RRRRLRLRLL, improve= 313.2, (0 missing)

Surrogate splits:

Solder splits as RL, agree=0.6, (0 split)

Node number 4: 420 observations

events=433, estimated rate=1.033 , deviance/n=2.082

Node number 5: 180 observations

events=1098, estimated rate=6.099 , deviance/n=5.295

Node number 6: 150 observations

events=680, estimated rate=4.535 , deviance/n=4.351

Node number 7: 150 observations

events=2766, estimated rate=18.42 , deviance/n=7.701

• The improvement is Devianceparent − (Devianceleft + Devianceright), which is
the likelihood ratio test for comparing two Poisson samples.

• The cross-validated error has been found to be overly pessimistic when de-
scribing how much the error is improved by each split. This is likely an effect
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Figure 10: The first figure shows the solder data, fit with the poisson method, using a cp

value of 0.05. The second figure shows the same fit, but with a cp value of 0.10. The function
prune.rpart was used to produce the smaller tree.

of the boundary effect mentioned earlier, but more research is needed.

• The variation xstd is not as useful, given the bias of xerror.

> plot(fit)

> text(fit,use.n=T)

> fit.prune <- prune(fit,cp=.10)

> plot(fit.prune)

> text(fit.prune,use.n=T)

The use.n=T option specifies that number of events / total N should be listed
along with the predicted rate (number of events/person-years). The function prune

trims the tree fit to the cp value 0.10. The same tree could have been created by
specifying cp = .10 in the original call to rpart.

8.4 Example: Stage C Prostate cancer, survival method

One special case of the Poisson model is of particular interest for medical consulting
(such as the authors do). Assume that we have survival data, i.e., each subject has
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either 0 or 1 event. Further, assume that the time values have been pre-scaled so as
to fit an exponential model. That is, stretch the time axis so that a Kaplan-Meier
plot of the data will be a straight line when plotted on the logarithmic scale. An
approximate way to do this is

temp <- coxph(Surv(time, status) ∼1)
newtime <- predict(temp, type=’expected’)

and then do the analysis using the newtime variable. (This replaces each time value
by Λ(t), where Λ is the cumulative hazard function).

A slightly more sophisticated version of this which we will call exponential scaling
gives a straight line curve for log(survival) under a parametric exponential model.
The only difference from the approximate scaling above is that a subject who is
censored between observed death times will receive “credit” for the intervening in-
terval, i.e., we assume the baseline hazard to be linear between observed deaths. If
the data is pre-scaled in this way, then the Poisson model above is equivalent to
the local full likelihood tree model of LeBlanc and Crowley [4]. They show that this
model is more efficient than the earlier suggestion of Therneau et. al. [7] to use the
martingale residuals from a Cox model as input to a regression tree (anova method).
Exponential scaling or method=’exp’ is the default if y is a Surv object.

Let us again return to the stage C cancer example. Besides the variables ex-
plained previously, we will use pgtime, which is time to tumor progression.

> fit <- rpart(Surv(pgtime, pgstat) ∼ age + eet + g2 + grade +

gleason + ploidy, data=stagec)

> print(fit)

node), split, n, deviance, yval

* denotes terminal node

1) root 146 195.30 1.0000

2) grade<2.5 61 44.98 0.3617

4) g2<11.36 33 9.13 0.1220 *

5) g2>11.36 28 27.70 0.7341 *

3) grade>2.5 85 125.10 1.6230

6) age>56.5 75 104.00 1.4320

12) gleason<7.5 50 66.49 1.1490

24) g2<13.475 25 29.10 0.8817 *

25) g2>13.475 25 36.05 1.4080

50) g2>17.915 14 18.72 0.8795 *

51) g2<17.915 11 13.70 2.1830 *

13) gleason>7.5 25 34.13 2.0280
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26) g2>15.29 10 11.81 1.2140 *

27) g2<15.29 15 19.36 2.7020 *

7) age<56.5 10 15.52 3.1980 *

> plot(fit, uniform=T, branch=.4, compress=T)

> text(fit, use.n=T)

Note that the primary split on grade is the same as when status was used as a
dichotomous endpoint, but that the splits thereafter differ.

> summary(fit,cp=.02)

Call:

rpart(formula = Surv(pgtime, pgstat) ∼ age + eet + g2 + grade +

gleason + ploidy, data = stagec)

CP nsplit rel error xerror xstd

1 0.12913 0 1.0000 1.0216 0.07501

2 0.04169 1 0.8709 0.9543 0.09139

3 0.02880 2 0.8292 0.9518 0.09383

4 0.01720 3 0.8004 0.9698 0.09529

5 0.01518 4 0.7832 0.9787 0.09351

6 0.01271 5 0.7680 0.9865 0.09340

7 0.01000 7 0.7426 0.9859 0.09412

Node number 1: 146 observations, complexity param=0.1291

events=54, estimated rate=1 , deviance/n=1.338

left son=2 (61 obs) right son=3 (85 obs)

Primary splits:

grade < 2.5 to the left, improve=25.270, (0 missing)

gleason < 5.5 to the left, improve=21.630, (3 missing)

ploidy splits as LRR, improve=14.020, (0 missing)

g2 < 13.2 to the left, improve=12.580, (7 missing)

age < 58.5 to the right, improve= 2.796, (0 missing)

Surrogate splits:

gleason < 5.5 to the left, agree=0.8630, (0 split)

ploidy splits as LRR, agree=0.6438, (0 split)

g2 < 9.945 to the left, agree=0.6301, (0 split)

age < 66.5 to the right, agree=0.5890, (0 split)

.

.

.
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Figure 11: The prostate cancer data as a survival tree

Suppose that we wish to simplify this tree, so that only four terminal nodes
remain. Looking at the table of complexity parameters, we see that prune(fit,

cp=.015) would give the desired result. It is also possible to trim the figure interac-
tively using snip.rpart. Point the mouse on a node and click with the left button to
get some simple descriptives of the node. Double-clicking with the left button will
‘remove’ the sub-tree below, or one may click on another node. Multiple branches
may be snipped off one by one; clicking with the right button will end interactive
mode and return the pruned tree.

> plot(fit)

> text(fit,use.n=T)

> fit2 <- snip.rpart(fit)

node number: 6 n= 75

response= 1.432013 ( 37 )

Error (dev) = 103.9783

> plot(fit2)

> text(fit2,use.n=T)

For a final summary of the model, it can be helpful to plot the probability of
survival based on the final bins in which the subjects landed. To create new variables
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Figure 12: An illustration of how snip.rpart works. The full tree is plotted in the first
panel. After selecting node 6 with the mouse (double clicking on left button), the subtree
disappears from the plot (shown in the second panel). Finally, the new subtree is redrawn
to use all available space and it is labelled.
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Figure 13: Survival plot based on snipped rpart object. The probability of tumor progression
is greatest in node 8, which has patients who are older and have a higher initial tumor grade.

based on the rpart groupings, use where. The nodes of fit2 above are shown in the
right hand panel of figure 12: node 4 has 1 event, 33 subjects, grade = 1-2 and g2 <
11.36; node 5 has 8 events, 28 subjects, grade = 1-2 and g2 > 11.36; node 7 has 37
events, 75 subjects, grade = 3-4, age > 56.5; node 8 has 8 events, 10 subjects, grade
= 3-4, age < 56.5. Patients who are older and have a higher initial grade tend to
have more rapid progression of disease.

> newgrp <- fit2$where

> plot(survfit(Surv(pgtime,pgstat) ∼ newgrp, data=stagec),

mark.time=F, lty=1:4)

> title(xlab=’Time to Progression’,ylab=’Prob Progression’)

> legend(.2,.2, legend=paste(’node’,c(4,5,6,7)), lty=1:4)

8.5 Open issues

The default value of the shrinkage parameter k is 1. This corresponds to prior coef-
ficient of variation of 1 for the estimated λj. We have not nearly enough experience
to decide if this is a good value. (It does stop the log(0) message though).

Cross-validation does not work very well. The procedure gives very conservative
results, and quite often declares the no-split tree to be the best. This may be another
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Figure 14: plot(fit); text(fit)

artifact of the edge effect.

9 Plotting options

This section examines the various options that are available when plotting an rpart
object. For simplicity, the same model (data from Example 1) will be used through-
out.

The simpliest labelled plot is called by using plot and text without changing
any of the defaults. This is useful for a first look, but sometimes you’ll want more
information about each of the nodes.

> fit <- rpart(progstat ∼ age + eet + g2 + grade + gleason + ploidy,

stagec, control=rpart.control(cp=.025))

> plot(fit)

> text(fit)

The next plot has uniform stem lengths (uniform=T), has extra information
(use.n=T) specifying number of subjects at each node, and has labels on all the
nodes, not just the terminal nodes (all=T).
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Figure 15: plot(fit, uniform=T); text(fit,use.n=T,all=T)

> plot(fit, uniform=T)

> text(fit, use.n=T, all=T)

Fancier plots can be created by modifying the branch option, which controls the
shape of branches that connect a node to its children. The default for the plots
is to have square shouldered trees (branch = 1.0). This can be taken to the other
extreme with no shoulders at all (branch=0).

> plot(fit, branch=0)

> text(fit, use.n=T)

These options can be combined with others to create the plot that fits your
particular needs. The default plot may be inefficient in it’s use of space: the terminal
nodes will always lie at x-coordinates of 1,2,. . . . The compress option attempts to
improve this by overlapping some nodes. It has little effect on figure 17, but in
figure 4 it allows the lowest branch to “tuck under” those above. If you want to
play around with the spacing with compress, try using nspace which regulates the
space between a terminal node and a split.
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Figure 16: plot(fit, branch=0); text(fit,use.n=T)
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Figure 17: plot(fit, branch=.4, uniform=T,compress=T)
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Endpoint = pgstat

Figure 18: post(fit)

> plot(fit,branch=.4,uniform=T,compress=T)

> text(fit,all=T,use.n=T)

We have combined several of these options into a function called post.rpart.
Results are shown in figure 18. The code is essentially

> plot(tree, uniform = T, branch = 0.2, compress = T, margin = 0.1)

> text(tree, all = T, use.n=T, fancy = T)

The fancy option of text creates the ellipses and rectangles, and moves the splitting
rule to the midpoints of the branches. Margin shrinks the plotting region slightly so
that the text boxes don’t run over the edge of the plot. The branch option makes
the lines exit the ellipse at a “good” angle. The call post(fit) will create a postcript
file fit.ps in the current directory. The additional argument file=’’ will cause the
plot to appear on the current active device. Note that post.rpart is just our choice
of options to the functions plot.rpart and text.rpart. The reader is encouraged to
try out other possibilities, as these specifications may not be the best choice in all
situations.
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10 Other functions

A more general approach to cross-validation can be gained using the xpred.rpart

function. Given an rpart fit, a vector of k complexity parameters, and the desired
number of cross-validation groups, this function returns an n by k matrix containing
the predicted value ŷ(−i) for each subject, from the model that was fit without that
subject. The cp vector defaults to the geometric mean of the cp sequence for the
pruned tree on the full data set.

> fit <- rpart(pgtime ∼ age + eet + g2 + grade + gleason + ploidy, stagec)

> fit$cptable

CP nsplit rel error xerror xstd

1 0.07572983 0 1.0000000 1.012323 0.1321533

2 0.02825076 2 0.8485403 1.094811 0.1547652

3 0.01789441 7 0.7219625 1.216495 0.1603581

4 0.01295145 8 0.7040681 1.223120 0.1610315

5 0.01000000 9 0.6911166 1.227213 0.1660616

> temp <- xpred.rpart(fit)

> err <- (stagec$pgtime - temp)^2

> sum.err <- apply(err,2,sum)

> sum.err / (fit$frame)$dev[1]

0.27519053 0.04625392 0.02248401 0.01522362 0.01138044

1.021901 1.038632 1.14714 1.179571 1.174196

The answer from xpred.rpart differs from the model computation shown earlier
due to different random number seeds, which causes slightly different cross-validation
groups.

11 Relation to other programs

11.1 CART

Almost all of the definitions in rpart are equivalent to those used in CART, and the
output should usually be very similar. The printout given by summary.rpart was
also strongly influenced by some early cart output. Some known differences are

• Surrogate splits: cart uses the percentage agreement between the surrogate
and the primary split, and rpart uses the total number of agreements. When
one of the surrogate variables has missing values this can lead to a different
ordering. For instance, assume that the best surrogate based on x1 has 45/50
= 90% agreement (with 10 missing), and the best based on x2 has 46/60 (none

50



missing). Then rpart will pick x2. This is only a serious issue when there
are a large number of missing values for one variable, and indeed the change
was motivated by examples where a nearly-100best surrogate due to perfect
concordance with the primary split.

• : Computation: Some versions of the cart code have been optimized for very
large data problems, and include such features as subsampling from the larger
nodes. Large data sets can be a problem in S-plus.

11.2 Tree

The user interface to rpart is almost identical to that of the tree functions. In
fact, the rpart object was designed to be a simple superset of the tree class, and
to inherit most methods from it (saving a lot of code writing). However, this close
connection had to be abandoned. The rpart object is still very similiar to tree
objects, differing in 3 respects

• Addition of a method component. This was the single largest reason for diver-
gence. In tree, splitting of a categorical variable results in a yprob element
in the data structure, but regression does not. Most of the “downstream”
functions then contain the code fragment “if the obeject contains a yprob
component, then do A, else do B”. rpart has more than two methods, and
this simple approach does not work. Rather, the method used is itself retained
in the output.

• Additional components to describe the tree. This includes the yval2 compo-
nent, which contains further response information beyond the primary value.
(For the gini method, for instance, the primary response value is the predicted
class for a node, and the additional value is the complete vector of class counts.
The predicted probability vector yprob is a function of these, the priors, and
the tree topology.) Other additional components store the competitor and
surrogate split information.

• The xlevels component in rpart is a list containing, for each factor variable,
the list of levels for that factor. In tree, the list also contains NULL values for
the non-factor predictors. In one problem with a very large (4096) number of
predictors we found that the processing of this list consumed nearly as much
time and memory as the problem itself. (The inefficiency in S-plus that caused
this may have since been corrected).

Although the rpart structure does not inherit from class tree, some of the tree
functions are used by the rpart methods, e.g. tree.depth. Tree methods that have
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y 1 2 3 1 2 3 1 2
x1 1 2 3 4 5 6 7 8
x2 1 2 3 4 5 6 1 2
x3 NA 22 38 12 NA 48 14 32

y 3 1 2 3 1 2 1
x1 9 10 11 12 13 14 15
x2 3 4 5 6 1 2 3
x3 40 NA 30 46 28 34 48

Table 1: Data set for the classification test case

not been implemented as of yet include burl.tree, cv.tree, hist.tree, rug.tree, and
tile.tree.

Not all of the plotting functions available for tree objects have been imple-
mented for rpart objects. However, many can be accessed by using the as.tree

function, which reformats the components of an rpart object into a tree object.
The resultant value may not work for all operations, however. The tree functions
ignore the method component of the result, instead they assume that

• if y is a factor, then classification was performed based on the information
index,

• otherwise, anova splitting (regression) was done.

Thus the result of as.tree from a Poisson fit will work reasonably for some plotting
functions, e.g., hist.tree, but would not make sense for functions that do further
computations such as burl.tree.

12 Test Cases

12.1 Classification

The definitions for classification trees can get the most complex, especially with
respect to priors and loss matrices. In this section we lay out a simple example, in
great detail. (This was done to debug the S functions.)

Let n = 15, and the data be as given in table 1. The loss matrix is defined as

L =
0 2 2
2 0 6
1 1 0
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where rows represent the true class and columns the assigned class. Thus the error
in mistakenly calling a class 2 observation a 3 is quite large in this data set. The
prior probabilities for the study are assumed to be π = .2, .3, .5, so class 1 is most
prevalent in the input data (ni=6, 5, and 4 observations, respectively), but class 3
the most prevalent in the external population.

Splits are chosen using the Gini index with altered priors, as defined in equation
(4.15) of Breiman et al [1].

π̃1 = π1(0 + 2 + 2)/
∑

π̃i = 4/21

π̃2 = π2(2 + 0 + 6)/
∑

π̃i = 12/21

π̃3 = π3(1 + 1 + 0)/
∑

π̃i = 5/21

For a given node T , the Gini impurity will be
∑

j p(j|T )[1 − p(j|T )] = 1 −∑
p(j|T )2, where p(j|T ) is the expected proportion of class j in the node:

p(j|T ) = π̃j[ni(T )/ni]/
∑

p(i|T )

.
Starting with the top node, for each possible predicted class we have the following

loss
predicted class E(loss)

1 .2*0 + .3*2 + .5*1 = 1.1
2 .2*2 + .3*0 + .5*1 = 0.9
3 .2*2 + .3*6 + .5*0 = 2.2

The best choice is class 2, with an expected loss of 0.9. The Gini impurity for the
node, using altered priors, is G = 1 − (16 + 144 + 25)/212 = 256/441 ≈ .5805.

Assume that variable x1 is split at 12.5, which is, as it turns out, the optimal
split point for that variable under the constraint that at least 2 observations are in
each terminal node. Then the right node will have class counts of (4,4,4) and the
left node of (2,1,0). For the right node (node 3 in the tree)

P (R) = .2(4/6) + .3(4/5) + .5(4/4)= 131/150
= probability of the node (in the population)

p(i|R) = (.2(4/6), .3(4/5), .5(4/4))/P (R)

P̃ (R) = (4/21)(4/6) + (12/21)(4/5) + (5/21)(4/4) = 259/315=37/45
p̃(i|R) = [(4/21)(4/6), (12/21)(4/5), (5/21)(4/4)] (45/37)
G(R) = 1 −∑ p̃(i|R)2 ≈ .5832
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For the left node (node 2)
P (L) = .2(2/6) + .3(1/5) + .5(0/4)= 19/150

p(i|L) = (.4/3, .3/5, 0)/ P (L) = (10/19, 9/19, 0)

P̃ (L) = 1 − P̃ (R) = 8/45

p̃(i|L) = [(4/21)(2/6), (12/21)(1/5), (5/21)(0/4)]/ P̃ (L)
G(L) = 1 −∑ p̃(i|L)2 ≈ .459
The total improvement for the split involves the change in impurity between the

parent and the two child nodes

n(G − [P̃ (L) ∗ G(L) + P̃ (R) ∗ G(R)]) ≈ .2905

where n = 15 is the total sample size.
For variable x2 the best split occurs at 5.5, splitting the data into left and

right nodes with class counts of (2,2,1) and (4,3,3), respectively. Computations just
exactly like the above give an improvement of 1.912.

For variable x3 there are 3 missing values, and the computations are similar to
what would be found for a node further down the tree with only 12/15 observations.
The best split point is at 3.6, giving class counts of (3,4,0) and (1,0,4) in the left
and right nodes, respectively.

For the right node (node 3 in the tree)

P̃ (R) = (4/21)(3/6) + (12/21)(4/5) + (5/21)(0/4) = 174/315
p̃(i|R) = [(4/21)(3/6), (12/21)(4/5), (5/21)(0/4)] (315/174)

= (5/29, 24/29, 0)
G(R) = 1 − (25 + 576)/292 = 240/841approx.2854
For the left node (node 2)

P̃ (L) = (4/21)(1/6) +(12/21)(0/5) + (5/21)(4/4)= 85/315
p̃(i|L) = [(4/21)(1/6), (12/21)(0/5), (5/21)(4/4)] (315/85)

= (2/17, 0, 15/17)
G(L) = 1 − (4 + 225)/172 = 60/289 ≈ .2076
The overall impurity for the node involves only 12 of the 15 observations, giving

the following values for the top node:
P̃ (T ) = 174/315 + 85/315 = 259/315

p̃(i|T ) = [(4/21)(4/6), (12/21)(4/5), (5/21)(4/4)] (315/259)
= (40/259, 144/259, 75/259)

G(T ) = 1 − (402 + 1442 + 752)/2592 = 39120/67081
The total improvement for the split involves the impurity G of all three nodes,

weighted by the probabilities of the nodes under the alternate priors.

15∗{(259/315)(39120/67081)− [(174/315)(240/841)+ (85/315)(60/289)]} ≈ 3.9876

As is true in general with the rpart routines, variables with missing values are
penalized with respect to choosing a split – a factor of 259/315 or about 12/15 in
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Cutpoint P (L) P (R) G(L) G(R) ∆I

1.3 0.03 0.97 0.00 0.56 0.55
1.8 0.06 0.94 0.00 0.53 1.14
2.5 0.18 0.82 0.46 0.57 0.45
2.9 0.21 0.79 0.50 0.53 0.73
3.1 0.32 0.68 0.42 0.56 1.01
3.3 0.44 0.56 0.34 0.52 1.96
3.6 0.55 0.45 0.29 0.21 3.99
3.9 0.61 0.39 0.41 0.26 2.64
4.3 0.67 0.33 0.48 0.33 1.56
4.7 0.73 0.27 0.53 0.45 0.74
4.8 0.79 0.21 0.56 0.00 0.55

Table 2: Cut points and statistics for variable x3, top node

the case of x3 at the top node. Table 2 shows the statistics for all of the cutpoints
of x3.

Because x3 has missing values, the next step is choice of a surrogate split. Priors
and losses currently play no role in the computations for selecting surrogates. For
all the prior computations, the effect of priors is identical to that of adding case
weights to the observations such that the apparent frequencies are equal to the
chosen priors; since surrogate computations do account for case weights, one could
argue that they should also then make use of priors. The argument has not yet been
found compelling enough to add this to the code.

Note to me: the cp is not correct for usesurrogate=0. The error after a split is
not (left error + right error) – it also needs to have a term (parent error for those
obs that weren’t split).

13 User written rules

The later versions of rpart have the ability to use a set of S functions to define user
written splitting rules. This was originally written as a way to pilot new ideas in
rpart, before adding them to the underlying C code. As it turns out, many of these
extensions have been useful as-is, and we encourage others to try out the feature.

If you were to examine the underlying C-code for rpart, you would discover
that the greatest portion of it is concerned with a number of simple, but tedious,
bookkeeping tasks. These include the list of which observatations are in each node,
which split was the best (primary) and which were secondary, pruning rules, cross-
validation, surrogate splits, and missing values. The primary design goal for user-
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written splits was to hide all of this complexity from the user. A user-written
split rule consists of a set of five functions: an initialization function that sets
certain parameters and checks the input data for consistency, an evaluation function
that labels each node and controls cost-complexity pruning, and, most important,
a splitting function. Two others functions define the labels for printed and plotted
output. We will explore these using 4 examples.

13.1 Anova

The anova rule is one of the simplest rules to implement. It is already built into
rpart, so it is also easy to test out the accuracy of our code.

Let us start with the init function.

temp.init <- function(y, offset, parms, wt) {
if (!is.null(offset)) y <- y-offset

if (is.matrix(y)) stop("response must be a vector")

list(y=y, parms=0, numy=1, numresp=1)

}

The arguments of init are always the y data, an optional offset, any user supplied
control parameters, and a vector of weights.

In the case of anova (regression), we expect y to be a vector, not a matrix. If
there is an offset, it is just subtracted from y before doing the computations, that
is, we compute on the residuals after subtracting the offset. There are no optional
parameters, so that argument is ignored, as are the weights.

The important task of the routine is to define a list of returned elements:

1. The (possibly transformed) response vector y.

2. The vector of optional control parameters. These are passed forward to the
splitting and evaluation functions, but not otherwise used.

3. The number of columns of y.

4. The number of responses. This is the length of the labeling vector that will be
produced by the evaluation function. In this case, the label will be the mean
of the node, so is of length 1.

Next comes the evaluation function:

temp.eval <- function(y, wt, parms) {
wmean <- sum(y*wt)/sum(wt)

rss <- sum(wt*(y-wmean)^2)
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list(label= wmean, deviance=rss)

}

This function will be passed the y vector (or matrix) for a single node. It needs
to create a label (which will be used in the printout), along with a measure of the
impurity of the node. The label must be a numeric vector of length numresp, the
value returned by the init function, and can contain anything that you might find
useful in the final printout. The measure of impurity does not have to be a deviance,
although that is the name of the argument and is a common choice for the impurity.
This impurity is used to drive the cost-complexity pruning, by comparing the sum
of impurities for two child nodes to the impurity of their parent. (If the impurity
does not get smaller, then the split has, by definition, not accomplished anything.
We discuss this in more detail later.)

The real work is done by the splitting function, which is always called with the
following arguments

temp.split <- function(y, wt, x, parms, continuous)

Here y, wt, and x are the response vector (or matrix), the vector of weights, and the
vector of values x for a single predictor at a single node. Any missing values have
been eliminated, and the data has already been sorted according to the values of
x. The last argument indicates whether the x vector corresponds to a continuous
variable (T) or to a factor (F). Factors have already been converted into integers
1, 2, . . .. (Although not all levels might be present in this node!) The parms vector
has been passed forward from the init function.

For the case of x continuous, the splitting function needs to return two vectors,
goodness and direction. If the y vector is of length n, then each of these needs
to be of length n − 1. The first element of the goodness vector gives a measure of
how ‘good’ a split of y1 vs y2, . . . , yn would be, the second the goodness of y1, y2 vs
y3, . . . , yn, and so on. This vector of values is used by the routine to choose the best
split on this particular x variable, and then uses that value to choose which variable
gives the best split overall.

In the simple example below we use the lung cancer data set, which has 7 contin-
uous predictors and and 228 observations. The final tree has 25 nodes (internal and
terminal), which means that the split routine was called 7*25= 175 times (without
cross-validation). If at all possible, we would like to calculate all of the split statis-
tics without using a for loop in the code. For anova splitting, the goodness criteria
we will use is to maximize the difference in sums of squares

∑
(y − ȳ)2 between

the parent node and the sum of its two children nodes. Looking back in our old
textbooks at the formula for one-way ANOVA, we see that this is equivalent to

nL(ȳL − ȳ)2 + nR(ȳR − ȳ)2
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where L and R refer to the left and right child respectively. This leads to an efficient
algorithm for the continuous case

temp.split <- function(y, wt, x, parms, continuous) {
# Center y

n <- length(y)

y <- y- sum(y*wt)/sum(wt)

if (continuous) {
temp <- cumsum(y*wt)[-n]

left.wt <- cumsum(wt)[-n]

right.wt <- sum(wt) - left.wt

lmean <- temp/left.wt

rmean <- -temp/right.wt

goodness <- (left.wt*lmean^2 + right.wt*rmean^2)/sum(wt*y^2)

list(goodness= goodness, direction=sign(lmean))

}

We have made one further simplification to the formula by first centering y. The
direction vector contains values of ±1, and is used in an advisory capactity by rpart

in organizing the printout. As used here, it causes the smaller node, in terms of ȳ,
to be plotted as the left child and the larger one as the right child. This can make
the overall tree easier to read.

The code does not need to worry about ties in the x variable. If, for instance x
6 and 7 were tied, then a split between positions 6 and 7 is not really possible. The
parent routine takes care of this.

The above code has also made another important but not necessarily obvious
choice. It has returned the percentage decrease in SS rather than the absolute
decrease. One obvious effect of this is that the ‘goodness’ values on the printout
are an R2 between 0 and 1. A second concerns missing values. Suppose that one
particular covariate was missing on 1/2 of the subjects, but on the others it was
perfectly predictive. In the above code, it will have an R2 of 1 and be chosen as the
best split. If instead we had returned the absolute change in SS (without dividing
by
∑

wiy
2
i ), the variable might easily have been only second or third best, beaten

out by one that had a less perfect R2 but a smaller number of missing values. If
there were no missing values, then choosing the split based on absolute decrease in
the SS, relative decrease in the SS, or the F-statistic for the decrease are equivalent
rules; but not so if some variables have missing values. None of these three choices
is more ‘right’ than the other, and which is more useful depends on the particular
problem at hand. (There are proponents of each who would strongly disagree with
this statement). Sometimes, for instance, a variable might be missing in the training
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data set, but if chosen could always be made available in the actual application of
the rule. Then the split based on R2, which does not penalize missing values, seems
sensible. If, on the other hand, there were a variable that will always be missing on
50% of the observations, use of the absolute SS would appropriately discourage its
choice.

The last part of the split routine deals with the case of a predictor that is a
factor. If the factor has k distinct levels, then the return vector of goodness values
is expected to be of length k − 1. The direction vector will be of length k, and it
gives an ordering to the k levels. The first element of goodness corresponds to a
split between the ordered levels 1 and 2 − k, the second to one that splits the first
two ordered levels from the others, and so on.

In the case of ANOVA splitting, it is fairly easy to prove that if one first orders
the levels of a categorical predictor according to the average y value for that category,
then the best possible split, among all 2k−1 possible ways of breaking the k levels
into two subsets, is one of the k−1 choices obtained by considering only the ordered
splits. A similar result can be shown for almost all applications to date of rpart,
although each is a separte proof. For simplicity of the code, the user-split routines
assume that such a result holds. (An example where this is not true is a classification
tree with more than 2 categories for y.)

else {
# Categorical X variable

ux <- sort(unique(x))

wtsum <- tapply(wt, x, sum)

ysum <- tapply(y*wt, x, sum)

means <- ysum/wtsum

# order the categories by their means

# then use the same code as for a non-categorical

ord <- order(means)

n <- length(ord)

temp <- cumsum(ysum[ord])[-n]

left.wt <- cumsum(wtsum[ord])[-n]

right.wt <- sum(wt) - left.wt

lmean <- temp/left.wt

rmean <- -temp/right.wt

list(goodness= (left.wt*lmean^2 + right.wt*rmean^2)/sum(wt*y^2),

direction = ux[ord])

}
}

The last two functions control the printout.
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temp.summary<- function(yval, dev, wt, ylevel, digits ) {
paste(" mean=", format(signif(yval, digits)),

", MSE=" , format(signif(dev/wt, digits)),

sep=’’)

}
temp.text <- function(yval, dev, wt, ylevel, digits, n, use.n ) {

if(use.n) paste(formatg(yval,digits),"

nn=", n,sep="")

else paste(formatg(yval,digits))

}

Our summary function has been designed to create a single line containing the
mean and mean squared error for the node. This label is used in the printout of
summary.rpart. The text function is used to label the nodes in a plot, and will
usually be designed to create a much shorter label. The ylevel argument applies
when the response is a factor, and contains the text lablels for each level of the
response; it is not applicable in this case. The total number of observations is a
default part of the summary printout but an optional part of text labels, controled
by the use.n argument of text.rpart.

To use these functions in rpart is quite simple. We bundle the functions into a
list, and then use that as the splitting criteria.

alist <- list(eval=temp.eval, split=temp.split, init=temp.init,

summary=temp.summary, text=temp.text)

fit0 <- rpart(income ~population +illiteracy + murder + hs.grad,

mystate, control=rpart.control(minsplit=10, xval=0),

method=alist)

13.2 Smoothed anova

The anova example above is uninteresting in one way, in that it only duplicates an
ability already in the rpart code. (In fact, the test suite for rpart uses this fact to
validate the code for user-written functions). We now consider an extension of the
anova code based on smoothed splits.

Figure 19 shows the goodness of split versus the split point for age, in the simple
model rpart(time ∼ age, data=lung). The roughness of the split criteria is not
uncommon, in this case a cut between ages 75 and 76 has the second best goodness,
and is the split chosen by rpart with the default minimum node size of 5, but a split
between 74 and 75, or 76 and 77, is not nearly as useful. Superimposed on the plot
are the results of the smooth function, which is much better behaved and has its
maximum for a split between ages 72 and 73.
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Figure 19: Cutpoints versus goodness for the age variable, lung cancer data.

Implementing a smoothed split in the user written function is quite easy. One
important constraint, however, is that we need to ignore ties. Even though n − 1
results are returned in the goodness vector, the parent rpart routine ignores all but
those for which x[i] != x[i+1], i.e., it will not split observations that have the same
x value; the remaining elements of the goodness vector are really just intermediate
sums. Our call to the smooth function also needs to have these intermediate values
suppressed, to get a valid smoother We need to add only 3 lines to the split function
defined in the last section (for the continuous case)

...

goodness <- (left.wt*lmean^2 + right.wt*rmean^2)/sum(wt*y^2)

indx <- which(diff(x)!=0) # new code

if (length(indx) >4)

goodness[indx] <- smooth(goodness[indx]) # new code

list(goodness= goodness, direction=sign(lmean))

}

(The smooth function requires an argument of length at least 4.) There are of course
many different smoothers that could be used, some with stronger justification than
the original Tukey suggestions implemented by smooth. An advantage of user-written
split rules is the ease with which different suggestions can be explored.
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13.3 Classification with an offset

This example comes by way of an interaction with Jinbo Chen, who had a very
interesting problem. The outcome variable is 0/1, so we want to do classifiaction,
but the input variables can be divided into two groups

1. a large number of genetic variables, for which a tree based model is appealing,

2. a set of clinical variables for which an ordinary logistic regression model is felt
to be superior

How might we blend these two tasks?
The first question is how the two predictions should interact. That is, if we

knew the right model for the clinical variables, how would we want to use that in
the rpart model, and vice versa. After some discussion, we decided to use a logistic
link, so that the final predictor would be

Pr(y = 1) =
eη

1 + eη

ηi = Xiβ + γ(i)

where Xi are the clinical variables for observation i, β the coefficients for those
variables, and γ a vector of predictors from the rpart model, one value per terminal
node, γ(i) stands for the terminal node into which observation i falls.

To fit this, we need to use alternating glm and rpart models, each of which
includes the result of the other as an offset. We will ignore here the issues of which
goes first, termination of the iteration, etc., and focus only on how to fit the rpart

portion of the data. For details see [2].
Here are the init and summary routines.

jinit <- function(y, offset, parms, wt) {
if (is.null(offset)) offset <- 0

if (any(y!=0 & y!=1)) stop (’response must be 0/1’)

list(y=cbind(y, offset), parms=0, numresp=2, numy=2)

}
jsumm <- function(yval, dev, wt, ylevel, digits ) {

paste("events=", round(yval[,1]),

", coef= ", format(signif(yval[,2], digits)),

", deviance=" , format(signif(dev, digits)),

sep=’’)

}

We need to make the offset variable available to the splitting rule, so it is added
as a second column of the response. (This trick of tacking ancillary information
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needed at every split onto the ‘y’ variable was first suggested by Dan Schaid, and
has been useful in a number of cases). At this point, we are not supporting priors
or losses, so there are no optional parameters. The printed label will include the
number of events along with the coefficient γ for the node. We do not supply a text
routine; the default action of rpart is to use the first element of vector returned by
our eval function, which is sufficient in this case.

For the splitting rule, we make direct use of the glm routine:

jsplit <- function(y, wt, x, parms, continuous) {
if (continuous) {

# do all the logistic regressions

n <- nrow(y)

goodness <- direction <- double(n-1) # allocate 0 vector

temp <- rep(0, n) # this will be the ’x’ variable in glm

for (i in 1:(n-1)) { # for each potential cut point

temp[i] <- 1 # update the left/right indicator

if (x[i] != x[i+1]) {
tfit <- glm(y[,1] ∼ temp + offset(y[,2]),

binomial, weight=wt)

goodness[i] <- tfit$null.deviance - tfit$deviance

direction[i] <- sign(tfit$coef[2])

}
}

}
else { # Categorical X variable

# First, find out what order to put the categories in, which

# will be the order of the coefficients in this model

tfit <- glm(y[,1] ∼ factor(x) + offset(y[,2]) -1, binomial,

weight=wt)

ngrp <- length(tfit$coef)

direction <- (1:ngrp)[order(tfit$coef)]

xx <- direction[match(x, sort(unique(x)))] #relabel

goodness <- double(length(direction) -1)

for (i in 1:length(goodness)) {
tfit <- glm(y[,1] ∼ I(xx>i) + offset(y[,2]),

binomial, weight=wt)

goodness[i] <- tfit$null.deviance - tfit$deviance

}
}

list(goodness=goodness, direction=direction)

}

Consider the continuous case first. For each possible splitpoint, we create a dummy
variable temp which divides the observations into left and right sons, and then call
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glm to do the fit. When running this example, the first thing you will notice is that
it is astoundingly slow, due to the large number of calls to the glm function. We have
already taken the first step in speeding up the function by only doing the productive
calls, those where xi 6= xi+1, since the parent routine will ignore all the other values
of the goodness vector anyway. The next step in speed would be to optimize the glm

call itself. For instance, since we know that the x, y, offset, and weight vectors have
already been checked — all the same length with no missing values — the second
level routine glm.fit could be used directly, saving some overhead.

The algorithm for the categorical case is only a bit more complex, although the
necessary indexing looks more formidable. Our starting point is a theorem found in
Brieman et al [1] that for the 2 class case, one can first order the categories defined
by x according to p̂, the fraction of observations in that category with y = 1; the
optimal split must then be one of those between the ordered categories. We assume
(without any proof) that the theorem still holds in the case of offsets.

The program uses a first glm to find the ordered coefficients for the categories,
and then reorders them. Suppose that x = 1, 2, 1, 3, 3, 5, 3, 1, 2, 5, and the coefficients
of the first glm fit were -.3, .4, -.6, and .2. (Remember that in a node further
down the tree, not all categories of x might be present). Then we want to set
direction= 3,1,4,2, showing that the third group in our list should be first in
line, then group 1, group 5 (the 4th largest in our list), and finally group 2. For
easier computation, we create a dummy variable xx = 2,4,2,1,1,3,1,2,4,3 which
has relabeled the categories from first to last (so 3 becomes a 1, reflecting its rank,
1 becomes 2, etc.)

The evaluation rule also makes use of a call to glm

jeval <- function(y, wt, parms) {
tfit <- glm(y[,1] ~ offset(y[,2]), binomial, weight=wt)

list(label= c(sum(y[,1]), tfit$coef), deviance=tfit$deviance)

}

Here is a trivial example of using the functions. Remember that the status
variable is coded as 1/2 in the lung data set.

jlist <- list(eval=jeval, split=jsplit, init=jinit, summary=jsumm)

temp <- predict(glm((status-1) ~ age, binomial, data=lung))

rpart(status-1 ~ factor(ph.ecog) +sex + meal.cal +

ph.karno + offset(temp),

data=lung, method=jlist)

n= 228

CP nsplit rel error

1 0.04437011 0 1.0000000
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2 0.03567130 1 0.9556299

3 0.02907407 3 0.8842873

4 0.01339915 4 0.8552132

5 0.01303822 7 0.8150158

6 0.01272237 8 0.8019775

7 0.01000000 9 0.7892552

Node number 1: 228 observations, complexity param=0.04437011

events=165, coef= 9.703813e-12, deviance=2.637128e+02

left son=2 (90 obs) right son=3 (138 obs)

Primary splits:

sex < 1.5 to the right, improve=11.700970, (0 missing)

ph.karno < 75 to the right, improve= 7.853151, (1 missing)

factor(ph.ecog) splits as LLRR, improve= 6.896152, (1 missing)

meal.cal < 1087.5 to the left, improve= 2.376010, (47 missing)

Node number 2: 90 observations, complexity param=0.0356713

events=53, coef= -5.683397e-01, deviance=1.201381e+02

left son=4 (27 obs) right son=5 (63 obs)

Primary splits:

factor(ph.ecog) splits as LRR-, improve=8.989182, (0 missing)

meal.cal < 1067.5 to the left, improve=8.845852, (23 missing)

ph.karno < 95 to the right, improve=2.954572, (0 missing)

Surrogate splits:

ph.karno < 95 to the right, agree=0.833, adj=0.444, (0 split)

...

In this data set of advanced lung cancer patients, the effect of age is not very highly
confounded with that for the other variables. A model without the offset has the
same split points, in the first node, for 3 of the 4 primary splits listed. Notice that
the overall coefficient for the first node is 0, which is expected since the logistic
model using age has already incorporated an overall intercept.

13.4 Cost-complexity pruning

The evaluation function for a node returns both a label for the node, which is an
arbitrary choice of the designer, along with a ‘deviance’. This latter is intended to
be some measure of the impurity of a node, which need not necessarily be an actual
deviance, but it does have some restrictions. It is nice if the value has an intrinsic
meaning to the user, since it is printed as part of the summary output; it is also
used, however, in cost complexity pruning.

Let D be the deviance for a node. For a given value c of the complexity param-
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eter, a given split is evaluated using a recursive rule

Dparent −
∑

[Dchild + c]

This is evaluated, using an efficient recursive algorithm, over all possible subtrees of
the parent node; the right hand sum is over all the terminal nodes of said subtree.
The value c acts somewhat like the per-variable penalty in an AIC or BIC calculation.
If there is at least one larger tree, i.e., set of splits below the parent, for which this
overall score is > 0, then a split of this parent node is “worth keeping” at threshold
c.

• Note that since c ≥ 0 and D ≥ 0, any node which has an impurity D = 0 will
not be split further. The node has been marked as perfectly pure, so there is
nothing left to do.

• In all of the examples above the impurity measure D and the goodness-of-split
measure were closely related. This is not a necessary constraint.

• An overly vigorous or a poorly chosen measure D will lead to the program
declaring that no splits are worth keeping. For instance D = n, the node size,
always shows that a split had no real gain. Setting D = n2 would show that
any split gives a gain in impurity (at c = 0).

Choosing a good impurity measure is often one of the harder parts of creating
a new splitting method. However, the cost-complexity measure is what orders the
final tree into a set of nested models. This aids in printing and plotting, and is
essential for cross-validation.

14 Source

The software exists in two forms: a stand-alone version, which can be found in statlib
in the ‘general’ section, and an S version, also on stalib, but in the ‘S’ section of the
library. All of the splitting rules and other computations exist in both versions, but
the S version has been enhanced with several graphics options, most of which are
modeled (copied actually) on the tree functions.
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