САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ЭКОНОМИЧЕСКОЙ КИБЕРНЕТИКИ

ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

по курсу: «Математические методы социально-экономического прогнозирования»

Выполнил: студент 5 курса специальности «Математические методы в экономике» Хачатуров Вартан Микаэлович

Научный руководитель: к. э. н., доц. Гиленко Евгений Валерьевич

Оценка

Санкт-Петербург 2010 г.

Содержание

Введение	3
1. Предварительный анализ данных	3
1.1. Анализ исходных данных	
Заключение	8

Введение

Нашей задачей в данном проекте будет являться построение прогнозного значения индекса ММВБ и цены акции ОАО "Газпром" по наблюдениям за предыдущий период.

Проект выполнен в среде GNU R с использованием пакета Sweave.

Подключим необходимые библиотеки и установим опции отображения:

```
> library(xtable)
> library(pastecs)
> library(tseries)
> library(urca)
> library(zoo)
> options(digits = 2)
> options(scipen = 100)
```

Прочтём временные ряды из текстовых файлов:

```
> mmvbzoo <- read.zoo("MICEX_080602_091130.txt", regular = TRUE,
+ header = TRUE, format = "%Y%m%d", colClasses = c("NULL",
+ "NULL", "character", "NULL", "numeric"))
> gazpzoo <- read.zoo("GAZP_080602_091130.txt", regular = TRUE,
+ header = TRUE, format = "%Y%m%d", colClasses = c("character",
+ "NULL", "NULL", "NULL", "NULL", "numeric", "NULL"))
```

Отметим, что мы воспользуемся классом zoo вместо стандартного ts, поскольку в наших рядах отсутствуют некоторые значения.

В силу того, что по-видимому, экономические агенты, совершая сделки в дни, когда торги не проводились, ориентируются на последние известные им значения, имеет смысл заполнить отсутствующие наблюдения предыдущими (в противном случае, нерегулярность ряда не позволит нам выполнить некоторые тесты).

```
> mmvbzoo <- merge(mmvbzoo, zoo(, seq(start(mmvbzoo), end(mmvbzoo),
+ by = "day")), fill = NA)
> gazpzoo <- merge(gazpzoo, zoo(, seq(start(gazpzoo), end(gazpzoo),
+ by = "day")), fill = NA)
> mmvbzoo <- na.locf(mmvbzoo)
> gazpzoo <- na.locf(gazpzoo)
```

1. Предварительный анализ данных

1.1. Анализ исходных данных

Распечатаем набор стандартных описательных статистик:

```
\label{eq:condition} $$ > df <- as.data.frame(stat.desc(cbind(gazpzoo, mmvbzoo), $$ + norm = TRUE, p = 0.95)) $$ > dataTable <- xtable(df, caption = c("Descriptive Statistics")) $$ > colnames(dataTable) <- c("Close price (GAZP)", "Close price (MICEX)") $$ > print(dataTable, floating = T) $$
```

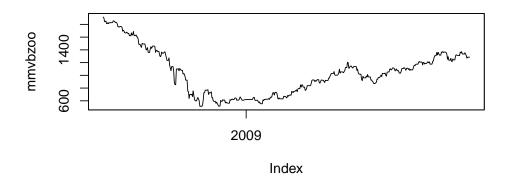
	Close price (GAZP)	Close price (MICEX)
nbr.val	547.00	547.00
nbr.null	0.00	0.00
nbr.na	0.00	0.00
min	86.60	513.62
max	356.00	1915.84
range	269.40	1402.22
sum	95291.45	568325.19
median	163.71	1028.91
mean	174.21	1038.99
SE.mean	2.77	14.92
CI.mean.0.95	5.44	29.30
var	4198.57	121729.62
std.dev	64.80	348.90
coef.var	0.37	0.34
skewness	1.22	0.49
skew. $2SE$	5.85	2.36
kurtosis	0.82	-0.49
kurt.2SE	1.97	-1.17
normtest.W	0.87	0.95
normtest.p	0.00	0.00

Таблица 1: Descriptive Statistics

Построим график исходных рядов данных:

```
> par(mfrow = c(2, 1))
```

Построим графики АСF и PACF:


```
> par(mfrow = c(2, 1))
```

> plot(mmvbzoo)

> plot(gazpzoo)

> acf(mmvbzoo)

> acf(gazpzoo)

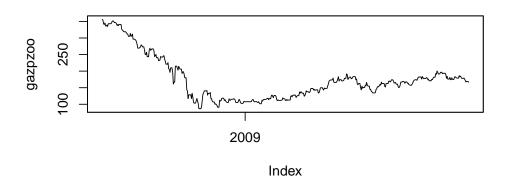
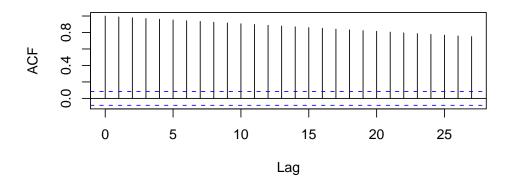



Рис. 1: Графики исходных рядов

Series mmvbzoo

Series gazpzoo

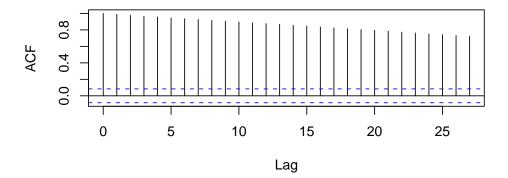
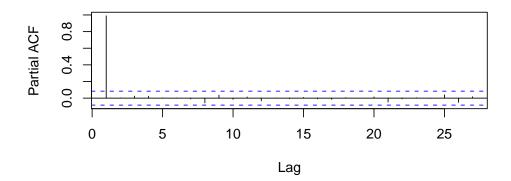



Рис. 2: АСГ исходных рядов данных

Series mmvbzoo

Series gazpzoo

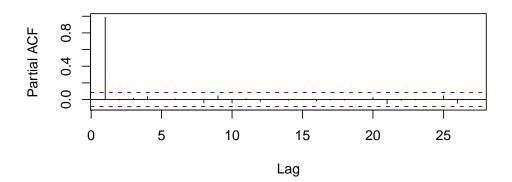


Рис. 3: РАСГ исходных рядов данных

- > par(mfrow = c(2, 1))
- > pacf(mmvbzoo)
- > pacf(gazpzoo)

Проведём ADF-тест:

> adf.test(as.ts(gazpzoo))

Augmented Dickey-Fuller Test

data: as.ts(gazpzoo)

 $\label{eq:Dickey-Fuller} \mbox{Dickey-Fuller} = \mbox{-}2.1, \mbox{ Lag order} = 8, \mbox{ p-value} = 0.5531$

alternative hypothesis: stationary

> adf.test(as.ts(mmvbzoo))

Augmented Dickey-Fuller Test

data: as.ts(mmvbzoo)

 $\label{eq:Dickey-Fuller} \mbox{Dickey-Fuller} = \mbox{-2, Lag order} = \mbox{8, p-value} = 0.5705$

alternative hypothesis: stationary

Заключение