
02 INFORMATION ABOUT PRINCIPAL INVESTIGATORS/PROJECT DIRECTORS(PI/PD) and
co-PRINCIPAL INVESTIGATORS/co-PROJECT DIRECTORS

Submit only ONE copy of this form for each PI/PD and co-PI/PD identified on the proposal. The form(s) should be attached to the original
proposal as specified in GPG Section II.C.a. Submission of this information is voluntary and is not a precondition of award. This information will
not be disclosed to external peer reviewers. DO NOT INCLUDE THIS FORM WITH ANY OF THE OTHER COPIES OF YOUR PROPOSAL AS
THIS MAY COMPROMISE THE CONFIDENTIALITY OF THE INFORMATION.

PI/PD Name:

Gender: Male Female

Ethnicity: (Choose one response) Hispanic or Latino Not Hispanic or Latino

Race:
(Select one or more)

American Indian or Alaska Native

Asian

Black or African American

Native Hawaiian or Other Pacific Islander

White

Disability Status:
(Select one or more)

Hearing Impairment

Visual Impairment

Mobility/Orthopedic Impairment

Other

None

Citizenship: (Choose one) U.S. Citizen Permanent Resident Other non-U.S. Citizen

Check here if you do not wish to provide any or all of the above information (excluding PI/PD name):

REQUIRED: Check here if you are currently serving (or have previously served) as a PI, co-PI or PD on any federally funded
project

Ethnicity Definition:
Hispanic or Latino. A person of Mexican, Puerto Rican, Cuban, South or Central American, or other Spanish culture or origin, regardless
of race.
Race Definitions:
American Indian or Alaska Native. A person having origins in any of the original peoples of North and South America (including Central
America), and who maintains tribal affiliation or community attachment.
Asian. A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for
example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.
Black or African American. A person having origins in any of the black racial groups of Africa.
Native Hawaiian or Other Pacific Islander. A person having origins in any of the original peoples of Hawaii, Guam, Samoa,
or other Pacific Islands.
White. A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.

WHY THIS INFORMATION IS BEING REQUESTED:

The Federal Government has a continuing commitment to monitor the operation of its review and award processes to identify and address
any inequities based on gender, race, ethnicity, or disability of its proposed PIs/PDs. To gather information needed for this important
task, the proposer should submit a single copy of this form for each identified PI/PD with each proposal. Submission of the requested
information is voluntary and will not affect the organization’s eligibility for an award. However, information not submitted will seriously undermine
the statistical validity, and therefore the usefulness, of information recieved from others. Any individual not wishing to submit some or all the
information should check the box provided for this purpose. (The exceptions are the PI/PD name and the information about prior Federal support, the
last question above.)

Collection of this information is authorized by the NSF Act of 1950, as amended, 42 U.S.C. 1861, et seq. Demographic data allows NSF to
gauge whether our programs and other opportunities in science and technology are fairly reaching and benefiting everyone regardless of
demographic category; to ensure that those in under-represented groups have the same knowledge of and access to programs and other
research and educational oppurtunities; and to assess involvement of international investigators in work supported by NSF. The information
may be disclosed to government contractors, experts, volunteers and researchers to complete assigned work; and to other government
agencies in order to coordinate and assess programs. The information may be added to the Reviewer file and used to select potential
candidates to serve as peer reviewers or advisory committee members. See Systems of Records, NSF-50, "Principal Investigator/Proposal
File and Associated Records", 63 Federal Register 267 (January 5, 1998), and NSF-51, "Reviewer/Proposal File and Associated Records",
63 Federal Register 268 (January 5, 1998).

Luke-jon Tierney

List of Suggested Reviewers or Reviewers Not To Include (optional)

SUGGESTED REVIEWERS:
Andreas Buja,
Dianne Cook,
Jan DeLeeuw,
James Gentle,
Michael M. Meyer,
Deborah Nolan,
Balasubramanian Narasimhan,
David W. Scott,
Antony Unwin,
Edward Wegman

REVIEWERS NOT TO INCLUDE:
Not Listed

COVER SHEET FOR PROPOSAL TO THE NATIONAL SCIENCE FOUNDATION
FOR NSF USE ONLY

NSF PROPOSAL NUMBER

DATE RECEIVED NUMBER OF COPIES DIVISION ASSIGNED FUND CODE DUNS# (Data Universal Numbering System) FILE LOCATION

FOR CONSIDERATION BY NSF ORGANIZATION UNIT(S) (Indicate the most specific unit known, i.e. program, division, etc.)

PROGRAM ANNOUNCEMENT/SOLICITATION NO./CLOSING DATE/if not in response to a program announcement/solicitation enter NSF 08-1

EMPLOYER IDENTIFICATION NUMBER (EIN) OR
TAXPAYER IDENTIFICATION NUMBER (TIN)

SHOW PREVIOUS AWARD NO. IF THIS IS
A RENEWAL
AN ACCOMPLISHMENT-BASED RENEWAL

IS THIS PROPOSAL BEING SUBMITTED TO ANOTHER FEDERAL
AGENCY? YES NO IF YES, LIST ACRONYM(S)

NAME OF ORGANIZATION TO WHICH AWARD SHOULD BE MADE ADDRESS OF AWARDEE ORGANIZATION, INCLUDING 9 DIGIT ZIP CODE

AWARDEE ORGANIZATION CODE (IF KNOWN)

IS AWARDEE ORGANIZATION (Check All That Apply) SMALL BUSINESS MINORITY BUSINESS IF THIS IS A PRELIMINARY PROPOSAL
(See GPG II.C For Definitions) FOR-PROFIT ORGANIZATION WOMAN-OWNED BUSINESS THEN CHECK HERE

NAME OF PERFORMING ORGANIZATION, IF DIFFERENT FROM ABOVE ADDRESS OF PERFORMING ORGANIZATION, IF DIFFERENT, INCLUDING 9 DIGIT ZIP CODE

PERFORMING ORGANIZATION CODE (IF KNOWN)

TITLE OF PROPOSED PROJECT

REQUESTED AMOUNT

$

PROPOSED DURATION (1-60 MONTHS)

months

REQUESTED STARTING DATE SHOW RELATED PRELIMINARY PROPOSAL NO.
IF APPLICABLE

CHECK APPROPRIATE BOX(ES) IF THIS PROPOSAL INCLUDES ANY OF THE ITEMS LISTED BELOW
BEGINNING INVESTIGATOR (GPG I.G.2)

DISCLOSURE OF LOBBYING ACTIVITIES (GPG II.C)

PROPRIETARY & PRIVILEGED INFORMATION (GPG I.D, II.C.1.d)

HISTORIC PLACES (GPG II.C.2.j)

SMALL GRANT FOR EXPLOR. RESEARCH (SGER) (GPG II.D.1)

VERTEBRATE ANIMALS (GPG II.D.5) IACUC App. Date

PHS Animal Welfare Assurance Number

HUMAN SUBJECTS (GPG II.D.6) Human Subjects Assurance Number

Exemption Subsection or IRB App. Date

INTERNATIONAL COOPERATIVE ACTIVITIES: COUNTRY/COUNTRIES INVOLVED

(GPG II.C.2.j)

HIGH RESOLUTION GRAPHICS/OTHER GRAPHICS WHERE EXACT COLOR
REPRESENTATION IS REQUIRED FOR PROPER INTERPRETATION (GPG I.G.1)

PI/PD DEPARTMENT PI/PD POSTAL ADDRESS

PI/PD FAX NUMBER

NAMES (TYPED) High Degree Yr of Degree Telephone Number Electronic Mail Address

PI/PD NAME

CO-PI/PD

CO-PI/PD

CO-PI/PD

CO-PI/PD

 Page 1 of 2

0906398

AU NZ SZ UK

DMS - STATISTICS

NSF 08-1 11/07/08

0604593426004813

University of Iowa

0018929000

University of Iowa
2 Gilmore Hall
Iowa City, IA. 522421320

Computing Environments for Stastistics

390,965 36 06/01/09

Statistics and Actuarial Science

319-335-3017

241 Schaeffer Hall

Iowa City, IA 52242
United States

Luke-jon Tierney PhD 1980 319-335-3386 luke@stat.uiowa.edu

062761671

Electronic Signature

11/04/2008 2 03040000 DMS 1269 09/29/2009 11:02am S

CERTIFICATION PAGE

Certification for Authorized Organizational Representative or Individual Applicant:
By signing and submitting this proposal, the Authorized Organizational Representative or Individual Applicant is: (1) certifying that statements made herein are true and complete to the
best of his/her knowledge; and (2) agreeing to accept the obligation to comply with NSF award terms and conditions if an award is made as a result of this application. Further, the
applicant is hereby providing certifications regarding debarment and suspension, drug-free workplace, and lobbying activities (see below), nondiscrimination, and flood hazard insurance
(when applicable) as set forth in the NSF Proposal & Award Policies & Procedures Guide, Part I: the Grant Proposal Guide (GPG) (NSF 08-1). Willful provision of false information in this
application and its supporting documents or in reports required under an ensuing award is a criminal offense (U. S. Code, Title 18, Section 1001).

Conflict of Interest Certification
In addition, if the applicant institution employs more than fifty persons, by electronically signing the NSF Proposal Cover Sheet, the Authorized Organizational Representative of the applicant
institution is certifying that the institution has implemented a written and enforced conflict of interest policy that is consistent with the provisions of the NSF Proposal & Award Policies &
Procedures Guide, Part II, Award & Administration Guide (AAG) Chapter IV.A; that to the best of his/her knowledge, all financial disclosures required by that conflict of interest policy have
been made; and that all identified conflicts of interest will have been satisfactorily managed, reduced or eliminated prior to the institution’s expenditure of any funds under the award, in
accordance with the institution’s conflict of interest policy. Conflicts which cannot be satisfactorily managed, reduced or eliminated must be dislosed to NSF.

Drug Free Work Place Certification
By electronically signing the NSF Proposal Cover Sheet, the Authorized Organizational Representative or Individual Applicant is providing the Drug
Free Work Place Certification contained in Exhibit II-3 of the Grant Proposal Guide.

Debarment and Suspension Certification (If answer "yes", please provide explanation.)

Is the organization or its principals presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded
from covered transactions by any Federal department or agency? Yes No

By electronically signing the NSF Proposal Cover Sheet, the Authorized Organizational Representative or Individual Applicant is providing the
Debarment and Suspension Certification contained in Exhibit II-4 of the Grant Proposal Guide.

Certification Regarding Lobbying
The following certification is required for an award of a Federal contract, grant, or cooperative agreement exceeding $100,000 and for an award of a Federal loan or a commitment providing
for the United States to insure or guarantee a loan exceeding $150,000.

Certification for Contracts, Grants, Loans and Cooperative Agreements
The undersigned certifies, to the best of his or her knowledge and belief, that:

(1) No federal appropriated funds have been paid or will be paid, by or on behalf of the undersigned, to any person for influencing or attempting to influence an officer or employee of any
agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with the awarding of any federal contract, the making of any
Federal grant, the making of any Federal loan, the entering into of any cooperative agreement, and the extension, continuation, renewal, amendment, or modification of any Federal
contract, grant, loan, or cooperative agreement.

(2) If any funds other than Federal appropriated funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any agency, a
Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with this Federal contract, grant, loan, or cooperative agreement, the
undersigned shall complete and submit Standard Form-LLL, ‘‘Disclosure of Lobbying Activities,’’ in accordance with its instructions.

(3) The undersigned shall require that the language of this certification be included in the award documents for all subawards at all tiers including subcontracts, subgrants, and contracts
 under grants, loans, and cooperative agreements and that all subrecipients shall certify and disclose accordingly.

This certification is a material representation of fact upon which reliance was placed when this transaction was made or entered into. Submission of this certification is a prerequisite for
making or entering into this transaction imposed by section 1352, Title 31, U.S. Code. Any person who fails to file the required certification shall be subject to a civil penalty of not less
than $10,000 and not more than $100,000 for each such failure.

Certification Regarding Nondiscrimination
By electronically signing the NSF Proposal Cover Sheet, the Authorized Organizational Representative is providing the Certification Regarding
Nondiscrimination contained in Exhibit II-6 of the Grant Proposal Guide.

Certification Regarding Flood Hazard Insurance
Two sections of the National Flood Insurance Act of 1968 (42 USC §4012a and §4106) bar Federal agencies from giving financial assistance for acquisition or
construction purposes in any area identified by the Federal Emergency Management Agency (FEMA) as having special flood hazards unless the:

(1) community in which that area is located participates in the national flood insurance program; and
(2) building (and any related equipment) is covered by adequate flood insurance.

By electronically signing the NSF Proposal Cover Sheet, the Authorized Organizational Representative or Individual Applicant located in FEMA-designated special flood hazard areas is
certifying that adequate flood insurance has been or will be obtained in the following situations:

(1) for NSF grants for the construction of a building or facility, regardless of the dollar amount of the grant; and
(2) for other NSF Grants when more than $25,000 has been budgeted in the proposal for repair, alteration or improvement (construction) of a building or facility.

AUTHORIZED ORGANIZATIONAL REPRESENTATIVE SIGNATURE DATE

NAME

TELEPHONE NUMBER ELECTRONIC MAIL ADDRESS FAX NUMBER

fm1207rrs-07

*SUBMISSION OF SOCIAL SECURITY NUMBERS IS VOLUNTARY AND WILL NOT AFFECT THE ORGANIZATION’S ELIGIBILITY FOR AN AWARD. HOWEVER, THEY ARE AN
INTEGRAL PART OF THE INFORMATION SYSTEM AND ASSIST IN PROCESSING THE PROPOSAL. SSN SOLICITED UNDER NSF ACT OF 1950, AS AMENDED.

Page 2 of 2

John S Massa Nov 4 2008 6:51PMElectronic Signature

319-335-2123 john-massa@uiowa.edu 319-335-2130

A Project Summary

The objective of the proposed research is to improve the ability of researchers, instructors, and other

users of statistical methodology to apply statistical methods in new problem areas. The primary

intellectual contribution of the proposed research will be the exploration and development of new

principles for the design of statistical software to take advantage of modern computing power.

This work will explore a range of issues, including the use of parallel computing, compilation and

static code analysis in statistical computing environments. The broader impact resulting from the

proposed research is to improve the ability of researchers, instructors, and other users of statistical

methodology to effectively apply this methodology in scientific research and teaching. This is

accomplished by making available results of the research as enhancements and additions to the

open source statistical software system R, and by influencing the design of other statistical software

through the R system and through publications resulting from the proposed research.

1

TABLE OF CONTENTS
For font size and page formatting specifications, see GPG section II.B.2.

 Total No. of Page No.*
Pages (Optional)*

Cover Sheet for Proposal to the National Science Foundation

 Project Summary (not to exceed 1 page)

 Table of Contents

 Project Description (Including Results from Prior

NSF Support) (not to exceed 15 pages) (Exceed only if allowed by a
specific program announcement/solicitation or if approved in
advance by the appropriate NSF Assistant Director or designee)

 References Cited

 Biographical Sketches (Not to exceed 2 pages each)

 Budget
(Plus up to 3 pages of budget justification)

 Current and Pending Support

 Facilities, Equipment and Other Resources

 Special Information/Supplementary Documentation

 Appendix (List below.)

(Include only if allowed by a specific program announcement/
solicitation or if approved in advance by the appropriate NSF
Assistant Director or designee)

Appendix Items:

*Proposers may select any numbering mechanism for the proposal. The entire proposal however, must be paginated.
Complete both columns only if the proposal is numbered consecutively.

1

1

15

4

2

5

2

2

0

C Project Description

The proposed research represents a continuation of research supported under grant DMS-0604593

“Computing Environments for Statistics” for the period from 06/01/06 to 05/31/09 for a total

award to the University of Iowa of $295,663.

C.1 Results from Prior NSF Support

C.1.1 Statistical Computing Environments

Research under DMS-0604593 resulted in the following formal publications related to computing

environments.

Rossini, A. J., Tierney, L., and Li, N., “Simple parallel statistical computing in R,” Journal of

Computational and Graphical Statistics, 16 (1), 399–420, 2007.

This paper outlines how a simple framework for parallel computing within a high level sta-

tistical language can be used to effectively improve performance for a range of problems.

Tierney, L., Rossini, A. J., and Li, N., “snow: A parallel computing framework for the R system,”

International Journal of Parallel Programming, to appear.

This paper presents the current design and implementation of the parallel computing frame-

work snow for a computer science audience.

Tierney, L., “R: An overview and some current directions,” Journal of the Korean Statistical

Society, 36 (1), 31–58, 2007.

This paper provides an overview of R and outlines efforts towards compilation and paral-

lelization.

Tierney, L., “Code analysis and parallelizing vector operations in R,” Computational Statistics,

to appear.

This paper provides an overview of the current state of code analysis tools for R and presents

some preliminary results on parallelizing basic vectorized mathematical functions.

Tierney, L., “Implicit and explicit parallel computing in R,” in “COMPSTAT 2008: Proceedings

in Computational Statistics,” Paula Brito (ed.), Physica Verlag, 43–51, 2008.

This paper outlines explicit parallelization based on the snow framework and further devel-

opments in parallelizing vectorized mathematical functions.

Feng, D., and Tierney, L., “Computing and Displaying Isosurfaces in R,” Journal of Statistical

Software, 28 (1), 1–24, 2008.

This paper presents the design and outlines the implementation of the 3D contouring facilities

provided by the misc3d package.

Further work in this area was made public through less traditional means, in particular through

the releases of new versions of the R system and of packages for R.

Continuing work on compilation has emphasized some foundational issues, including name space

management and static code analysis. These work together to obtain a clearer understanding of

1

the semantics of the code to be compiled. The refined code analysis work has resulted in a separate

package codetools that became a recommended package included with the basic R distribution

starting with R 2.5. This package is now used as part of the package checking process by R package

developers and the CRAN archive maintainers.

A package misc3d, originally released in 2005, has been substantially revised and extended.

Rendering of 3D contours now also supports standard and grid graphics in addition to interactive

rgl graphics. This is joint work with Dai Feng and forms part of his Ph. D. thesis.

The proftools package for processing and visualizing R profiling output was released in 2007.

This package helps identifying computational bottlenecks and directing effort for performance im-

provement of R code.

New versions of the snow package for parallel computing were released in 2007 and 2008. These

add support for NWS as a fourth low-level communications mechanism, and the ability to run snow

clusters on Windows and mixed Windows/Linux/UNIX environments. A version with support for

collecting and visualizing timing information for parallel computations is in preparation.

Experimental packages pnmath and pnmath0 have been made available on the PI’s web site.

These implement a strategy for parallelizing basic vectorized mathematical functions. Refining the

strategy and integration into the standard R distribution are part of the proposed research.

C.1.2 Other Areas

Work on Markov chain Monte Carlo methods resulted in one new submission:

Haran, M. and Tierney, L., “Exact and approximate samplers for spatial generalized linear mod-

els,” submitted for publication.

Collaboration with Dr. Haran, who was supported during his graduate studies under an earlier

NSF grant, is ongoing and will likely lead to further publications.

Dr. Dai Feng, who received support from this grant, completed his Ph. D. in May 2008. His

thesis developed a method for brain tissue classification based on MRI images. A joint paper on

this work is in preparation and should be submitted within a few months.

Dr. Jung-Eun Song, who also received some support on this grant, completed her Ph. D. in

June 2008. Her work involved the study of Bayesian partition models as a non-parametric method

for fitting curves and surfaces. A package implementing the methodology and a paper are in

preparation.

2

C.2 Proposed Research

The objective of this research is to develop design principles for the next generation of statisti-

cal software systems that will allow statisticians to effectively take advantage of computational

resources that are becoming available. These resources include fast multi-core processors and

bitmapped displays, distributed data bases, and distributed computing facilities, among others.

Modern data analysis environments used by practitioners, methodological researchers, and in-

structors in statistics include S, R, MATLAB, among others. The fact that these environments

incorporate or are based on programming languages is crucial to their ability to implement new

approaches and to support adapting analyses of scientific problems to the requirements of a prob-

lem, rather than adapting the problem to available analysis tools. Experience with these systems

has underscored the value of the language-based approach, but has also revealed many weaknesses

that need to be addressed in future software generations. In addition, new hardware and operating

system capabilities have opened up new opportunities that can only be exploited if they are ac-

cessible from statistical environments. Much can be learned by drawing on results and experience

in Computer Science research on high level languages, but there are features, and combinations of

features, of statistical computing that are not well addressed by standard language research. These

include the need for vector and array operations, the need for frameworks for data management

that are integrated with the language, and the need to support interactive and experimental pro-

gramming. The challenge to research on statistical computing environments and languages is to

take advantage of progress made in Computer Science, and perhaps contribute to that progress,

while at the same time addressing these unique needs of statistical computing.

The proposed research will involve a number of different but related areas and approaches. Some

of these are outlined below. The primary framework for experimenting with the proposed ideas

and for disseminating the results of this work will be the R system. Due to the massive increase

in popularity of R in recent years this ensures both a thorough testing of ideas and a substantial

impact of successful approaches. The development of R is a collaborative effort among 19 researchers

throughout the world, with significant contributions from the user community. Incorporation of

new ideas will involve coordination with many members of the R core development group. Where

more extensive collaboration with specific individuals is in progress or anticipated this is noted in

the discussion below.

C.2.1 Parallel and Distributed Statistical Computations

The ability to take advantage of opportunities for parallel computation in scientific computing

is becoming increasingly important. Improvements in speed of individual processors have leveled

off, but multiple processor cores are becoming more widely available, both as multi-core CPUs in

individual machines and as collections of workstations in departments or rack mounted clusters.

Over the next few years it is expected that in scientific computing in general significant performance

improvements will have to come primarily from taking advantage of these opportunities for parallel

computing [8]. Parallel programming is however quite difficult, so it is important to provide tools

and frameworks to assist users of scientific software in taking advantage of these opportunities.

This research will focus on two different approaches: creating frameworks for explicit parallel

computing that are easy to use but nevertheless effective for a wide range of problems, and implicit

approaches in which the internals of a system like R are modified to carry some computations out

in parallel without the need for any explicit user specification. Work on explicit parallelization will

3

be further divided into high-level tools that are intended to be mastered very easily and lower level

tools that require more experience but can express a richer set of parallel computations.

High-Level Explicit Parallelization

Previous research has lead to the development of the snow parallel computing framework [41, 48].

The framework is designed to implement simple scatter-compute-gather computations on top of a

distributed memory message passing framework. A set of worker R processes is started on one or

more computers by a master R process, and functions are provided for partitioning jobs, sending

the jobs from the master to the workers, and retrieving results in the master proces. Four different

low level message passing mechanisms are supported: MPI [34], PVM [20], NWS [39], and a basic

socket mechanism. The computational functions are modeled on the apply family of functions

familiar to R programmers. The snow package has been quite successful and is now used in a range

of packages available from the CRAN and Bioconductor repositories. Nevertheless, there is still

considerable room for further progress, and the proposed research will take advantage of experience

gained so far in moving the framework forward.

The original framework was easiest to deploy in a UNIX/Linux framework. With increasing

availability of Windows clusters, along with a quite common scenario of researchers using Windows

workstations to access Linux clusters, there is a strong need to better support Windows and mixed

Windows/Linux settings. For use on stand-alone multi-core computers it is also useful to be able

to avoid the need for additional software, such as message-passing libraries that may be difficult

to set up for either technical or political reasons. The current development version of the snow

package includes experimental enhancements to the socket-based framework that provide much

enhanced support for Windows operating systems and for handling mixed environments consisting

of Windows, Linux, and Mac OS X computers. Further work is needed in testing and refining these

enhancements to improve their reliability and ease of use.

The highest level interface of the snow framework includes functions like parLapply, a parallel

version of the standard R function lapply that applies a specified function to each element of a

generic vector and returns a vector of the results. The parallel version partitions the vector into

chunks, one for each worker, applies lapply on the worker processes, and assembles the results.

Experience with the interface provided by the Open MP [15] framework suggests that it would be

useful to provide some additional controls to the partitioning process. A minimal chunk size could

be used to specify that the lapply should be done sequentially if the vector is not long enough

for the benefits of parallelizeiton to outweigh the cost of synchronization. Also useful would be

the ability to request that a larger number of smaller chunks be used in a load-balancing fashion,

i.e. assigning additional chunks of work to workers that finish first. Open MP provides scheduling

directives for this purpose; we will explore whether similar approaches can be used effectively with

the higher-level snow functions.

Another area in need of further exploration is the handling of errors. Currently if any of the

workers in a scatter-compute-gather computation produces an error then the entire computation will

signal an error on the master process. This is often the right result, but there are situations where

one might want to filter out computations that produce an error and return the non-error results.

It is possible to program alternative strategies using the error handling mechanisms provided by

R, but this can be quite tedious and we will therefore explore approaches for more easily specifying

alternative error handling strategies. The ability to cleanly interrupt parallel computations is also

limited at best; improvements will need to rest on improved control of asynchronous error handling

4

as mentioned in Section C.2.3 below.

Profiling tools are a valuable aid in developing parallel programs. For message-passing systems

in particular it is useful to have tools for visualizing how much of the run time of a parallel

computation is spent actually performing computations as opposed to communicating or waiting for

results. Visualization tools are available for some message-passing back ends, such as the xpvm tool

for PVM and the xmpi tool for the LAM implementation of MPI. But not all versions of MPI offer

such tools, and no such tools are available for use with a socket-based communication mechanism.

Research will explore whether the snow implementation can be modified to collect relevant data

on timing and communication and then display those using R’s own graphics facilities. An initial

experiment along these lines is available in the development version of snow; further refinements

and enhancements will be explored.

A high-level paradigm for parallel computations that has received considerable attention in

recent years is Google’s Map/Reduce approach [16]. A group of researchers at Duke University

lead by Ricardo Pietrobon is currently investigating ways of taking advantage of this framework

within R, and they are initially looking at possible extensions of the snow framework as a way of

implementing this. It is expected that collaboration with this effort will lead to useful enhancements

to the snow framework.

Intermediate-Level and Low-Level Explicit Parallelization

The basic model for the snow toolkit is a single scatter-compute-gather operation. Many interesting

algorithms can be expresses as a single initial scatter of data, a sequence of scatter-compute-gather

operations in which communication is limited, and ending with a larger gather operation. This can

be handled by the current package if data is stored in global variables on the worker nodes across

calls to the parallel execution functions. While feasible, this has all the usual drawbacks of using

global state. A research objective will be to develop a clean mechanism for specifying a session

that manages these persistent values, ensures that the values are released once the computation is

complete, and possibly ensures that intermediate values can be garbage collected. A related issue

is to integrate distributed arrays for use with the ScaLapack parallel linear algebra package into

the framework. Also useful in this context would be a means of loading such arrays from disk

and storing distributed arrays to disk; this would help in situations where an array is too large for

the memory on a single machine but can fit in the collective memory of nodes in a cluster. The

RScaLapack package, which unfortunately is no longer under active development, did not address

the issue of maintaining distributed arrays across calls, though other aspects of this package may

prove useful. The design of the MATLAB distributed computing toolbox as described in [43] and

the PyACTS system described in [17] may also provide useful guides.

The possibility of smoothly integrating the basic snow functionality with other richer parallel

programming paradigms will also be explored. Because of its avoidance of deadlock, the BSP model

[9] represents a particularly attractive approach. Implementations of this model within Python [22]

and Objective Caml [31, 29] may serve as useful starting points.

At times it can be useful to have available a lower level parallel computing framework that

allows creation of individual processes and communication among any of these processes. Such a

framework could be useful for creating servers providing statistical functionality as a web service,

for implementing responsive graphical user interfaces to one or more computational engines, and for

implementing higher level mechanisms like snow. An interesting possibility that will be explored is

whether a useful framework can be built on the model provided by the functional language Erlang

5

[7], which was originally designed for creating highly reliable software for the telecommunications

industry. The basic Erlang parallel communication framework is built around three primitives:

spawn for creating a new process, send for asynchronously sending a message to a process, and

recv for waiting for a message, or until an optional timeout expires. The processes do not share

memory — all information needed by cooperating processes is transmitted using messages. These

high level language processes can be implemented as separate operating system processes, possibly

running on separate computers connected by a network, or as operating system threads running

within a single operating system process, or as a combination. An additional possibility that only

provides concurrency rather than true parallelism is to interleave concurrent processes within an R

evaluator running in a single thread.

A preliminary implementation of this mechanism in which each R process is mapped to a

separate R session and operating system process shows considerable promise. This approach uses a

manager process that acts as a server for exchanging messages; this design is similar to the design

used in the iPython framework [35]. An interesting question is whether this model can effectively

be used with operating system threads within a single process or a collection of operating system

processes to provide a form of multi-threading for R. Previous efforts to add thread support to R

have stumbled over issues related to the heavy use of global variables in many R packages. The fact

that in this model the R processes would not share memory may make it possible to use a design in

which “safe” R processes that do not use packages making use of globals can run on threads within

a single operating system process, while “unsafe” R processes run in separate OS processes. Use of

separate OS processes for less trusted code can also provide some protection from crashes caused

by errors in package C code. This approach to using OS processes in place of threads for increased

reliability of an overall application has recently been introduced into development versions of several

web browsers to protect against faults in browser plug-ins.

Implicit Parallelization

The basic idea in implicit parallelization of a high level language like R is to identify operations

that are computationally intensive and to arrange for the work of these operations to be divided

up among several processors without requiring explicit intervention on the part of the user. This

involves the use of multiple threads. In some cases libraries using this approach are readily available

and can be used by linking them into R. For example, most linear algebra computations are based

on the basic linear algebra subroutines library, or BLAS. R provides its own basic implementation

derived from an open source reference implementation, but makes it easy to substitute an alternate

implementation, such as a hardware vendor library or one from the ATLAS project [49]. A number

of BLAS implementations provide threaded versions that try to improve performance by using

multiple threads. A major challenge is that there is overhead associated with synchronization of

threads, among other things, that can result in threaded versions running slower than non-threaded

ones. This has been observed in the use of threaded BLAS libraries.

Another candidate for implicit parallelization is R’s vectorized arithmetic operations. The R

math library includes many special functions, densities, cumulative distribution functions, and

quantile functions. R level versions of these functions apply the functions to all elements of vector

arguments. This is currently implemented by a simple loop. If the work of this loop is divided

among several processors then the resulting computation may run faster. However, care is needed

as there is synchronization overhead, and shared resources (memory, bus, etc.) impose bottlenecks.

As a result, while parallelization of vectorized operations will be beneficial for large vectors, it can

6

Figure 1: Timings of vectorized function evaluations for qnorm and pgamma as a function of vector

length for two 8-processor systems. Plots for 10 replications are shown. Black: single thread; red:

2 threads; blue: 4 threads; green: 8 threads.

be harmful for short ones. Careful tuning is needed to ensure that parallelization is only used if it

will be helpful.

Figure 1 shows performance measurements for a range of vector sizes and two functions on

two 8-processor systems. Some simple empirical observations from these and similar plots for

other functions: Times are roughly linear in vector length for each function/OS/thread number

combination, the intercepts are roughly the same for all functions on a given platform, and the

relative slopes for different functions appear to be roughly independent of OS/architecture. These

observations motivate a simple cost model for determining the appropriate number of threads to

use given the vector size, the number of available processors, and information on OS/architecture

performance encoded in pre-determined slope and intercept values. Slopes can be determined once

and updated only when implementations change or new functions are added; intercepts can be

determined using a calibration experiment run at installation time, perhaps with an option of using

pre-computed values for common OS/architecture combinations. The slope for a simple function,

like the normal density function dnorm, can be used as a base line; thus timings are computed in

units of single element dnorm calculations. Experiments suggest that the two-processor intercept

for Linux/AMD/x86 64 is approximately 200 dnorm evaluations; for Mac OS X 10.4/Intel/i386 it

is around 500. Thus for Mac OS X parallel evaluation of dnorm calls only pays for vectors of length

500 or more. For simpler functions like sqrt the cutoff is even higher, but there are some very

computationally intensive functions, such as qtukey, where parallel evaluation is useful for vectors

7

of two elements.

Implementing the approach outlined above involves using threads to evaluate different parts

of the basic vectorization loops. One possibility is to directly use a basic threading API, such as

pthreads, but a better choice is to use Open MP (Chandra et al. 2000). Many commercial compilers

as well as gcc 4.2 support Open MP. Open MP uses compiler directives (#pragma statements in C;

FORTRAN uses structured comments) to request parallel implementation of a loop. A compiler

that does not support Open MP will ignore the Open MP directives. Use of Open MP eliminates

the need to manually manage threads, but some effort is still needed. Only loops with simple

control structure can be parallelized by Open MP, which requires rewriting some of the loops used

in the standard R code. Also, it is essential that the functions being called are safe to call from

multiple threads. For this to be true these functions cannot use read/write global variables, call

R’s memory manager, signal warnings or errors, or check for user interrupts. Almost all functions

in the basic R math library are either thread-safe or easily modified to be thread-safe. Exceptions

are the Bessel functions and the Wilcoxon and signed rank functions — these use global variables

to store allocated memory for intermediate results and will need to be rewritten to make them

thread-safe.

A preliminary implementation of the approach outlined here is available as a package pnmath

[46]. Loading this package replaces the standard vectorized functions in R by parallelized ones.

The next step is to integrate this work into the R distribution and resolve some configuration

issues related to detecting libraries and compiler flags needed for Open MP support. Once this is

complete, other functions will be examined for possible parallelization. Obvious candidates include

calculations of matrix row and column sums and means and some simple applications of the sweep

and outer functions. More extensive options may become available with the support of compilation

as discussed in the following section.

C.2.2 Compilation and Code Analysis for Statistical Languages

Traditionally, statistical and numerical languages such as S [13], R [26], MATLAB [44], or Lisp-Stat

[47] have been designed around an interpreter. This works well as long as the languages are used

primarily as a simple mechanism for linking together basic numerical routines written in Fortran

or C. But as more sophisticated programs are developed in the languages themselves, the need for

greater speed becomes more important, as does the need for tools to aid in ensuring code correctness.

Common current practice is to develop prototypes in the high-level statistical languages and then

manually translate critical portions into a lower level language. This is error prone and time

consuming. In Computer Science, new languages are almost always designed with compilation to a

lower level target language in mind. Sometimes this target language is C, sometimes the machine

language of a particular computer, but often it is the machine language for a conceptual, or virtual,

machine. This machine language is then either interpreted by a virtual machine implementation or

translated further to executable code. The advantage of compilation even to an interpreted byte

code is that many operations, such as type checking, identification of the locations of local variables,

or establishing targets for non-local exits, that have to be done by an interpreter at run time can

safely be carried out at compile time or eliminated entirely as the result of static code analysis.

This can result in very substantial performance improvements with no user intervention. It may

not be reasonable to hope that the need to code some portions in C or Fortran can be eliminated

entirely, but even modest performance improvements can reduce the number of situations where

manual translation is needed. In addition, speed improvements through compilation can allow code

8

Figure 2: An illustration of the reduced synchronization in compound vector operations made

possible by compilation.

implementing the statistical language itself that is currently implemented in C to be moved to the

higher level language, thus making the code easier to maintain.

As described in Section C.1, work under the previous grant made significant progress on code

analysis tools, and the results have been incorporated into the standard R distribution. Less

progress was made on compilation itself, in large part because it has become clear that some

changes in direction are needed from the initial approach first outlined in [45] and leading to the

currently available experimental compiler. Three major issues need to be addressed: compiler-

based support for parallel computing, improvements in loop performance for scalar data, and

mantainability within the context of an open source project.

With the increasing availability of multi-core processors the need to take advantage of par-

allelism to improve performance has come further to the forefront. The implicit parallelization

approach outlined in the previous section can be effective for large vectors, but because of overhead

involved in setting up and synchronizing parallel computations, parallel computation will not help

for modest size vectors when the cost of this overhead has to be paid for each vector operation.

With compilation it is possible to take advantage of the observation that most arithmetic operations

occur in larger expressions which the compiler can fuse to amortize the overhead and thus make

parallelization pay off for smaller vector sizes. As a simple example, consider the expression

exp(-0.5 * x ^ 2)

applied to a vector x. Figure 2 illustrates how sequential, interpreted parallel, and compiled parallel

approaches might work. The computation consists essentially of three steps: squaring the values

in the vector, scaling the results, and exponentiating the scaled results. An interpreted parallel

approach would need to synchronize its threads around each step. A compiler could fuse the steps

and synchronize only at the beginning and end of the fused operation. A cost model along the

lines described in the previous section can be used to compute at compile time for each fused

expression a threshold for determining when the sizes of vectors involved are sufficient to warrant

use of multiple threads. In addition to recognizing compound expressions that can be parallelized

as a unit, compilation can also recognize simple applications of the apply family of functions that

can be performed in parallel, for example by analyzing the functions applied to determine that they

are free of side effects.

While R and other vector-based languages perform best when code it written to take advantage

9

of vectorized operations, there are situations where scalar loops are difficult to avoid. Improving

the performance of such loops is one of the goals of any compilation project. While the initial R

byte code compiler made some good progress in this direction, recent results obtained by the Psyco

[3] specializing compiler for Python and also Stephen Milborrow’s jit compiler for R loops [32]

suggest that much more progress can be made within even a byte compiled framework. Research

will explore, in collaboration with Milborrow, whether ideas from the R jit framework can be

effectively incorporated into a compiler and runtime system for the full R language. Ideas from the

Psyco and PyPy [4] projects may also prove useful. The initial compilation target will remain a

specialized virtual machine designed specifically for R, but other options will be considered as well.

These include the LLVM framework that can generate native machine code, and other byte code

systems, such as the JVM and CIL [2] as used in the Microsoft .Net framework. Other possible

approaches include compilation to C code, which has been considered in the RCC project [18, 19].

Ihaka and Temple Lang [25] are also exploring the possibility of using Common Lisp as a low

level implementation base, in particular Common Lisp implementations with strong compilation

support. This approach may require more changes to the R language than seems desirable at this

time but is worth examining.

An important aspect of the success of R is its open source nature and the fact that a significant

number of researchers, 19 currently, participate in its maintenance and evolution. One consequence,

however, that has become apparent is that having two evaluation mechanisms, one based on inter-

preting source code and one based on byte code, creates maintenance problems: it is too easy to

make changes in one without making the corresponding change in the other, resulting in the two

mechanisms drifting apart. It is therefore important to move as soon as possible to a framework

in which all code is compiled. It will also be necessary to extensively document the working of the

virtual machine and the compiler so all members of the development group can participate in its

maintenance if needed. It is important to emphasize that a compilation-based approach in no way

inhibits interactive use of the language. It merely means that the evaluation mechanism compiles

an expression and then executes the compiled code instead of directly interpreting the internal

representation of the source language.

Once an effective virtual machine design has been identified and an initial compiler targeting the

machine has been constructed it will be necessary to explore opportunities for compiler optimiza-

tions. A number of additional opportunities for optimization are available. One costly operation

in tight numerical loops is the allocation of heap storage for intermediate results. The interpreter

cannot afford to do very much about this, but a compiler, perhaps aided by suitable assertions

in the code, can determine when storage can be safely reused immediately without going through

the memory manager. In some cases it may be possible to allocate the storage in a particularly

efficient way, say using a stack discipline. Work on compiling APL [12] and NESL [10] may provide

useful approaches. These optimizations will work hand in hand with the efforts to parallelize vector

operations as discussed above.

The amount of process stack available is typically rather limited by the operating system. The

R interpreter, like many interpreters, implements R function calls with a series of nested C function

calls, which uses the process stack and thus limits the possible depth of recursion in R. A virtual

machine can be designed to reduce process stack usage by a combination of heap allocation of the

R call stack and tail call optimizations to eliminate unnecessary stack growth. R semantics place

some limits on such optimizations; research will explore what is possible and how making available

user declarations might help enable more aggressive optimization.

10

As R is often used in a functional style, results on compiling Lisp [27], ML [5] and other

mostly functional languages [6] should also prove helpful in developing optimization strategies for

compiling R. The R language also uses a limited form of lazy evaluation that applies only to

function arguments. Since R, unlike fully lazy languages like Haskell [36], does not use lazy data

structures, lazy evaluation has less impact on performance, but there still is some impact and

it is worth exploring whether techniques such as conservative strictness analysis can be used to

improve performance and perhaps enable other optimizations. Research will also examine whether

small changes in R semantics may help in enabling optimizations. One example is to reduce the

requirement to provide access to the full call stack — the immediate caller is sufficient in almost

all cases. This would allow tail call optimization, an important technique for compiling functional

languages.

One area in which languages to support statistical computing differ from general purpose lan-

guages is in the need for a much wider range of basic mathematical functions. In addition to

standard arithmetic operations and transcendental functions there is a need for functions to evalu-

ate densities, cumulative distribution functions, and quantile functions for standard distributions.

Furthermore, users need to be able to add support for nonstandard distributions and other special

functions. Ideally it should be possible to allow user packages to add support for such functions in

a way that integrates them with the compilation system and allows them to take advantage of the

parallel evaluation mechanism just described. Research will explore the development of an effective

and disciplined approach to allow the compiler and virtual machine to be extended in this way.

Initially the compiler will be designed for the R language and the Virtual machine will be closely

tied to the current R runtime system. A longer term goal is to produce an abstract virtual machine

that can serve as a compilation target for several different statistical languages, including Lisp-like,

R-like, and graphical languages, and that in turn can be implemented by direct interpretation of

virtual machine code, or by translation to C code, or to Java JVM or CIL byte code.

Work on code analysis tools will continue as part of the overall efforts on compilation of R. In

particular with dynamic languages like R code analysis can identify some bugs with certainty, but

in many cases it can only identify a situation that represents a possible bug that merits further

investigation. A balance must be struck between reporting too many and too few possible bugs

by providing control over classes of issues that are shown, and if possible a useful ranking within

these classes. Code analysis for error detection has been the subject of recent research in Computer

Science where some strategies have uncovered a number of previously unknown bugs in large code

bases, including the Linux kernel [28, 24]. The possibility of transferring results from this research

to the R context will be explored.

C.2.3 Other Areas of Research

This section describes a few additional areas that will be addressed as time permits or the need

arises to support other aspects of the investigation.

Exception Handling in Statistical Languages

Structured exception handling is an important component of all modern programming languages.

It is also becoming more important to statistical languages as the opportunity and need to access

resources over the internet from within a computation has increased, and these opportunities bring

with them a host of new types of possible failures that need to be addressed in different ways. A

11

powerful exception handling system supporting both calling handler semantics (in the spirit of Unix

signal handlers) and exiting handler semantics (along the lines of mechanisms provided by Java

or C++) has been developed and incorporated into R. The mechanism also includes a separate

mechanism for managing restarts, points at which a computation can be resumed. The previous

simple mechanisms have been reimplemented on top of the new mechanism. The mechanism is

strongly influenced by the Common Lisp model [38], with some simplifications taken from the

Dylan model [42]. Experience so far has shown this approach to be successful in practice, but

several issues remain to be addressed in continued research.

One important task is to develop a hierarchy of exception conditions to represent the many

possible error conditions signaled by internal R code. Currently these all produce the same type

of error condition. For effective programmatic error handling it is important to allow code to

distinguish, for example, between the error of providing an improperly formatted URL and an

error due to a failed connection. A refined set of error conditions will provide a means for making

this distinction programmatically.

Another area that needs attention is the possibility of integrating R with structured exception

handling mechanisms in other software. Many languages that are now used to write code that

may need to be interfaced to R provide structured exception handling mechanisms and may also

assume that this code is only exited through ordinary returns or use of these exception handling

mechanisms. C++ is one example; the operating system structured exception handling mechanism

on the MS Windows platform is another. It would be very useful, if not essential, for R exceptions

that occur in code called from C++ to be converted to C++ exceptions and vice versa. Means for

accomplishing this, to the extent possible, will be investigated.

A further issue related to exception handling is the handling of asynchronous exceptions, in

particular user interrupts. Providing a means for users to interrupt computations that take too

long or were started in error is essential for any interactive statistical system, and R provides such a

mechanism on all platforms. However, certain operations involving the use of resources that need to

be properly closed should not be interrupted at arbitrary points. The structured exception handling

mechanism provides the basic means for controlling what is done in response to an interrupt, but

additional means are needed to control exactly when the interrupt can be delivered and when it

must be deferred until a critical operation is complete. Parallel computations as discussed in Section

C.2.1 provide a good example: If the user on a master process interrupts a parallel computation,

then the interrupt must be caught, propagated to the worker nodes to ensure that these are properly

terminated, and only then continue and terminate the computation on the master. Research on

asynchronous exception handling in other languages, in particular Haskell [30], will provide valuable

guidance to possible approaches in the R context. An experimental mechanism for controlling when

interrupts may occur has been implemented but further testing and refinement is needed.

Once these issues have been addressed an important next step is to preparate a document

describing the effective use of powerful exception handling in a range of statistical applications.

This will encourage use of the approach and also help identify weaknesses. This document, to be

developed with Robert Gentleman, will be submitted for publication in a statistical computing

journal.

Graphical User Interfaces

A recurring theme in discussions about R is graphical user interfaces. This can have a number

of different meanings, such as: a limited interface designed to bring a particular analysis to a

12

specialized audience; a framework to make a wide range of basic procedures more easily available

to a broad audience; or a means for expressing a rich set of computations through a graphical

language. All are challenging problems. From a system design perspective, a common theme is

that they require a structure that allows user input through user interface events from a user

interface toolkit to work seamlessly with executing R language code. Since the ability to display

graphics with a limited amount of interaction is a basic component of the simplest R session,

this involves the interplay of two user interface frameworks. This is a major challenge and is in

large part responsible for the difficulty in experimenting with alternative graphical interfaces to

R. Some preliminary work to develop an event handling infrastructure that can allow multiple

toolkits to cooperate within a single R session has been carried out. If time permits, a prototype

implementation will be constructed and used to implement a set of example interfaces. Work in

this area will most likely be joint with Duncan Temple Lang and Simon Urbanek.

Memory Management and Serialization Issues

With increasing use of R in cooperation with other systems that also use memory management

mechanisms it is becoming more important to have ways of integrating R’s memory management

system with other systems. External references and weak pointers based on the design of a sim-

ilar system for Haskell [37] have been added to R. There is a strong need to for more extensive

documentation of these mechanisms and to review and revise the mechanism in light of experience

to date. For example, the need to be able to customize the serialization mechanism for external

pointers when these are transmitted to other applications over a network or stored on disk has re-

cently arisen in the context of recreating Java objects used by the RWeka package [23]. A possible

approach has been designed and will be implemented and tested in the near future. Once these

revisions have been completed a paper for a statistical software journal will be written to provide

documentation of the mechanisms and their uses. Some of this work will be in collaboration with

Kurt Hornik and Simon Urbanek.

Object Oriented Programming Support

Object-oriented programming has proven to be a very valuable paradigm in all areas, including

statistical computing. Exactly what is meant by object oriented programming can be somewhat

unclear. Historically there have been many variations on the theme, though in recent years a

common claim is that only the form of object-oriented programming available in C++ or Java is

“true” object oriented programming. R provides two systems for object-oriented programming,

the S3 system and the S4 system [13, 14]. Both are based on a generic function approach, a

quite different model from the one used by C++ and Java. The S4 approach supports multiple

inheritance, multiple dispatch, and several other advanced concepts. The design is very ambitious

and very powerful. It is also often perceived as being very complex and, in some respects, rigid.

It has been adopted enthusiastically by some projects, notably the BioConductor suite [1, 21], but

has been avoided by others.

It may be useful to begin a re-examination of the object-oriented programming support in R.

One direction to consider is whether it is time to prepare more extensive educational material on

proper and effective use of the S4 approach, in particular in the context of the modularity provided

by the name space mechanism. A second option is to explore alternate approaches. For example,

predicate based dispatch is an approach that allows methods to be defined for objects, or sets of

13

objects, that satisfy a predicate. A simple example is a method for a square matrix, i.e. a matrix for

which the number of rows equals the number of columns. A system supporting predicate dispatch

would allow a method for a square matrix to be defined without the need to introduce a formal

square matrix subclass. Some recent work in this direction is discussed in [33].

Persistent Storage and Checkpointing

Integration with persistent storage systems is another area where further work is needed. R assumes

that working data is maintained in memory, but requires a form of specialized storage for preserving

data across sessions. This storage mechanism is also used for managing the definitions of system

functions. The mechanism used by R for serializing objects into a stream of bytes for storage has

been made explicit and has been used to allow the implementation of a deferred loading mechanism

for function definitions [40]. This can be viewed as an ad hoc persistent storage interface. A more

formal structure in which different back end data bases can be used individually or in combination

is worth exploring. A system that supports persistent storage of the state of a computation will

provide a valuable mechanism for checkpointing and possibly migrating long-running computations.

A careful design, integrated well with existing SQL data base access approaches, could lead to a

significant improvement in both maintainability and usability. Experience with the Root system [11]

may provide valuable guidance in this work. Efforts in this direction will likely be in collaboration

with Brian Ripley and Duncan Temple Lang.

Applications to Brain Imaging

Collaboration with imaging researchers at the University of Iowa has resulted in one Ph.D. disserta-

tion and was a major motivation for the work on visualization incorporated in the misc3d package.

This collaboration is expected to continue. In addition to providing many interesting challenges and

opportunities for developing new statistical methodology, such as the tissue classification method

developed by Dr. Dai Feng in his thesis research, the very large data sets arising in medical image

analysis provide a good framework for exploring the effectiveness of parallelization strategies and

other strategies for improving the performance of R on large data sets.

C.2.4 Research Approach and Progress to Date

Exploring different approaches to the design of statistical software requires that they be imple-

mented and tested in the context of a statistical computing environment. The R system will serve

as the primary basis for the initial explorations. It is important to note that the objective of this

work is not just to design a specific system but to also develop principles of system design that

can be adopted by others designing very different systems. But principles can only be explored

and tested in the context of a complete system with a reasonable user base. R provides such a

framework.

Results of this research will initially be made available as software implementations in revisions

of R and in separate R packages. After some experience has been gained from this exposure, results

will be submitted for publication as articles in journals on statistical computing.

Work on extensions to the snow framework for parallel computing will continue throughout the

project. The experimental work on parallel evaluation of vectorized mathematical functions will

be folded into R and extended to functions not yet covered once some configuration issues have

14

been resolved, hopefully by mid 2009. Work will then be able to proceed on parallelizing other

internal functions, such as row and column summaries and other basic variants of the apply family

of functions.

A first generation experimental implementation of a compiler for R has been completed and

further refined and has been made available in a limited way for testing. This design needs to

be revised to allow incorporation of parallel execution instructions and to support more efficient

representation of scalar data and more efficient variable access. This will hopefully be completed in

time for an initial public release by late 2009. At that point experimentation with more significant

optimizations and with the development of annotation mechanisms for guiding the compiler will

begin; this should lead to a release of an improved compiler towards the middle of 2010. If these

approaches are successful, a conversion to a pure compiled runtime may be possible by early 2011.

Several portions of the research project may benefit significantly from attending Computer

Science conferences on language design and implementation. Work on several implementation

aspects of the proposed research will proceed more quickly if a graduate assistant with sufficient

programming skills is available to assist with some of the coding. Experience working on system

implementation may also result in new design ideas that can form the basis of a Ph. D. dissertation.

C.2.5 Broader Impact of Proposed Research

Data analysis is an integral part of most if not all scientific research. Good data analysis practice,

and the teaching of good data analysis practice, require the use of good software, software that al-

lows the data analytic tasks to be matched to the needs of the basic scientific problems investigated.

The proposed research contributes to this goal in a very direct way by making available its results

in the form of enhancements and additions to the R statistical software system. R is already used

extensively in both research and teaching, and the proposed research will lead to improvements

that make it considerably more valuable for both purposes.

One area where R has become particularly valuable is bioinformatics through the BioConductor

project [1, 21]. Compilation and the support of parallel computing will allow the current tool set

to be applied more effectively and will aid in supporting the development of more computationally

intensive techniques. Further improvements to error handling mechanisms will aid areas such as

the increasingly important activity of reliably incorporating bioinformatics and other information

available on the internet into statistical computations.

The longer term effect of this research will be to make contributions to the principles of statistical

software design that are applicable to all forms of statistical software. This will help enhance

productivity of research and improve instruction that use data analysis tools of any kind.

15

D References Cited

[1] BioConductor: Software for bioinformatics. World Wide Web, URL = http://www.

bioconductor.org/.

[2] Standard ECMA-335: Common Language Infrastructure (CLI). World Wide Web, URL =

http://www.ecma-international.org/publications/standards/Ecma-335.htm.

[3] Psyco. World Wide Web, URL=http://psyco.sourceforge.net/, 2008.

[4] PyPy. World Wide Web, URL=http://codespeak.net/pypy/dist/pypy/doc/home.html,

2008.

[5] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[6] Andrew W. Appel. Modern Compiler Implementation in C: Basic Techniques. Cambridge

University Press, 1997.

[7] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,

2007.

[8] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K Keutzer, D. A. Patterson,

L. W. Plishker, J. Shalf, S. W. Williams, and K. A Yelick. The landscape of parallel computing

research: a view from Berkeley. Technical Report UCB/EECS-2006-183, EECS Department,

University of California, Berkeley, 2006.

[9] Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP and

MPI. Oxford, 2004.

[10] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and Marco

Zagha. Implementation of a portable nested data-parallel language. Journal of Parallel and

Distributed Computing, 21(1):4–14, April 1994.

[11] Rene Brun and Fons Rademakers. The ROOT system home page. World Wide Web,

URL=http://root.cern.ch/, 2008.

[12] Timothy Budd. An APL Compiler. Springer-Verlag, 1988.

[13] John M. Chambers. Programming with Data: A Guide to the S Language. Springer, 1998.

[14] John M. Chambers. Software for Data Analysis: Programming with R. Springer-Verlag, 2008.

[15] R. Chandra, R. Menon, and D. Dagum, L. Kohr. Parallel Programming in OpenMP. Morgan

Kaufmann, San Francisco, 2000.

[16] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Operating

Systems Design and Implementation, pages 137–149, 2004.

[17] L. Antony Drummond, Vicente Galiano, Violeta Migallón, and Jose Penadés. PyACTS: A

Python based interface to ACTS tools and parallel scientific applications. International Journal

of Parallel Programming, to appear.

1

[18] John Garvin. RCC. World Wide Web, URL=http://hipersoft.cs.rice.edu/rcc/.

[19] John Garvin. RCC: A compiler for the R language for statistical computing. Master’s thesis,

Rice University, 2004.

[20] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel

Virtual Machine. A User’s Guide and Tutorial for Networked Parallel Computing. MIT Press,

1994.

[21] R. Gentleman, V. Carey, D. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier,

Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li,

M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. K. Smyth, L. Tierney, J. Y. H. Yang,

and J. Zhang. Bioconductor: Open software development for computational biology and

bioinformatics. Genome Biology, 5(10), 2004.

[22] Konrad Hinsen, Hans Petter Langtangen, Ola Skavhaug, and Åsmund Ødeg̊ard. Using BSP

and Python to simplify parallel programming. Future Gener. Comput. Syst., 22(1):123–157,

2006.

[23] Kurt Hornik. RWeka: R/Weka Interface, 2008.

[24] David Hovemeyer and William Pugh. Finding bugs is easy. In OOPSLA ’04: Companion to the

19th annual ACM SIGPLAN conference on Object-oriented programming systems, languages,

and applications, pages 132–136, New York, NY, USA, 2004. ACM Press.

[25] R. Ihaka and D. Temple Lang. Back to the future: Lisp as a base for a statistical computing

system. In Paula Brito, editor, COMPSTAT 2008: Proceedings in Computational Statistics,

pages 21–34. Physica Verlag, 2008.

[26] Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics. Journal of

Computational and Graphical Statistics, 5:299–314, 1996.

[27] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, and Norman

Adams. ORBIT: An optimizing compiler for scheme. ACM SIGPLAN Notices, pages 219–233,

1986.

[28] Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. Correlation exploitation

in error ranking. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth

international symposium on Foundations of software engineering, pages 83–93, New York, NY,

USA, 2004. ACM Press.

[29] F. Loulergue, R. Benheddi, F. Gava, and D. Louis-Régis. Bulk synchronous parallel ML: Se-

mantics and implementation of the parallel juxtaposition. In Dima Grigoriev, John Harrison,

and Edward A. Hirsch, editors, Computer Science - Theory and Applications, First Inter-

national Computer Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, June

8-12, 2006, Proceedings, volume 3967 of Lecture Notes in Computer Science, pages 475–486.

Springer, 2006.

2

[30] Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy. Asynchronous excep-

tions in Haskell. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Pro-

gramming language design and implementation, pages 274–285, New York, NY, USA, 2001.

ACM Press.

[31] A. Merlin, G. Hains, and F. Loulergue. An SPMD environment machine for functional BSP

programs. In SFP’2001 Scottish Functional Programming Workshop, Stirling, August 2001.

[32] Stephen Milborrow. jit: Just-in-Time Compiler for the R Language. World Wide Web,

URL=http://www.milbo.users.sonic.net/ra.

[33] Todd Millstein. Practical predicate dispatch. In OOPSLA 2004: Proceedings of the 2004

ACM Conference on Object-Oriented Programming, Languages, and Applications, pages 354–

364. ACM, 2004.

[34] The message passing interface (MPI) standard. World Wide Web, URL = http://www-unix.

mcs.anl.gov/mpi/.

[35] F Pérez and B. Granger. IPython: A system for interactive scientific computing. Computing

in Science and Engineering, 9(3):21–29, 2007.

[36] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Phil Wadler. The

Glasgow Haskell compiler: a technical overview. In Proceedings of the UK Joint Framework

for Information Technology (JFIT) Thechical Conference, Keele, UK, 1993.

[37] Simon L. Peyton Jones, Simon Marlow, and Conal Elliott. Stretching the storage manager:

Weak pointers and stable names in Haskell. In Implementation of Functional Languages, pages

37–58, 1999.

[38] Kent M. Pitman. Condition Handling in the Lisp Language Family, volume 2022 of Springer

Lecture Notes in Computer Science, pages 39–58. Springer-Verlag, 2001.

[39] REvolution Computing. NetWorkSpaces for R, 2008. R package version 1.6.3.

[40] Brian D. Ripley. Lazy loading and packages in R 2.0.0. R News, 4(2):2–4, September 2004.

[41] A. J. Rossini, L. Tierney, and N. Li. Simple parallel statistical computing in R. Journal of

Computational and Graphical Statistics, 16(1):399–420, 2007.

[42] Andrew Shalit, David Moon, and Orca Starbuck. The Dylan Reference Manual: The Definitive

Guide to the New Object-Oriented Dynamic Language. Addison-Wesley, 1996.

[43] Gaurav Sharma and Jos Martin. MATLAB: A language for parallel computing. International

Journal of Parallel Programming, to appear.

[44] The MathWorks. MATLAB. World Wide Web, URL = http://www.mathworks.com/.

[45] L. Tierney. Compiling R: A preliminary report. In Proceedings of the 2nd International

Workshop on Distributed Statistical Computing, 2001.

[46] L. Tierney. Implicit and explicit parallel computing in R. In Paula Brito, editor, COMPSTAT

2008: Proceedings in Computational Statistics, pages 43–51. Physica Verlag, 2008.

3

[47] Luke Tierney. LISP-STAT: An Object-Oriented Environment for Statistical Computing and

Dynamic Graphics. Wiley, NewYork, NY, 1990.

[48] Luke Tierney, Anthony J. Rossini, and Na Li. snow: A parallel computing framework for the

R system. International Journal of Parallel Programming, to appear.

[49] R. C. Whaley and A. Petitet. Minimizing development and maintenance costs in supporting

persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121, 2005.

4

E Biographical Sketch for Luke Tierney

Biographical Data

Mailing Address

Luke Tierney, Department of Statistics and Actuarial Science, University of Iowa, 241 Scha-

effer Hall, Iowa City, IA 52242.

Date/Place of Birth

October 26, 1954 New York City, NY

Education

Ph. D. 1980, Operations Research, Cornell University, Ithaca, NY.

M. A. 1979, Operations Research, Cornell University, Ithaca, NY.

B. A., M. A. 1977, Mathematical Sciences, Johns Hopkins University, Baltimore, Md.

Employment

Chair, Department of Statistics and Actuarial Science, University of Iowa, since August 2004.

Professor, Department of Statistics and Actuarial Science, University of Iowa, August 2002.

Professor, School of Statistics, University of Minnesota, September 1991.

Associate Professor, School of Statistics, University of Minnesota, September 1985.

Assistant Professor, School of Statistics, University of Minnesota, January 1984.

Assistant Professor, Department of Statistics, Carnegie-Mellon University, September 1980 -

December 1983.

Publications

Five Related Publications

• Tierney, L. LISP-STAT: An Object-Oriented Environment for Statistical Computing and Dy-

namic Graphics, New York: Wiley, 1990.

• Tierney, L. “Name Space Management for R,” R News: The Newsletter of the R Project 3(1),

2–6, 2003.

• Rossini, A. J., Tierney, L., and Li, N., “Simple parallel statistical computing in R,” Journal

of Computational and Graphical Statistics, 16 (1), 399–420, 2007.

• Tierney, L., “Implicit and explicit parallel computing in R,” in “COMPSTAT 2008: Proceed-

ings in Computational Statistics,” Paula Brito (ed.), Physica Verlag, 43–51, 2008.

• Tierney, L., Rossini, A. J., and Li, N., “snow: A parallel computing framework for the R

system,” International Journal of Parallel Programming, to appear.

1

Five Other Publications

• Tierney, L. “Markov chains for exploring posterior distributions,” with discussion, Ann.

Statist. 22, 1701–1762, 1994.

• Tierney, L. and Mira, A., “Some Adaptive Monte Carlo Methods for Bayesian Inference,”

Statistics in Medicine 18, 2507–2515, 1999.

• Mira, A. and Tierney, L. “On the use of auxiliary variables in Markov chain Monte Carlo

sampling,” Scandinavian Journal of Statistics 29, 1–12, 2002.

• R. Gentleman, V. Carey, D. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier,

Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C.

Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. K. Smyth, L. Tierney, J. Y. H.

Yang, J. Zhang, “Bioconductor: Open Software Development for Computational Biology and

Bioinformatics,” Genome Biology 5 (10), 2004.

• Feng, D., and Tierney, L., “Computing and Displaying Isosurfaces in R,” Journal of Statistical

Software, 28 (1), 1–24, 2008.

Collaborators During Past 48 Months

D. M. Bates (U. of Wisconsin), J. M. Chambers (Lucent), R. Gentleman (U. of Washington),

M. Haran (Penn State U.), K. Hornik (WU VIenna), J. Huang (U. of Iowa) S. Iacus (U. of

Milan, Italy), R. Ihaka (Auckland U., New Zealand), F. Leisch (TU VIenna), N. Li (U. of

Minnesota), S. Ma (Yale U.) M. Maechler (ETH Zurich, Switzerland), R. Pietrobon (Duke

U.), A. Rossini (Novartis), H. Sevcikova (U. of Washington) D. Temple Lang (UC Davis).

Theses Supervised

Synian Hwang, Ph. D. Thesis, Carnegie-Mellon University, August 1984 (supervised jointly

with S. Fienberg). Affiliation: State of New York.

YuTing Cheng, Ph. D. Thesis, University of Minnesota, October 1996. Affiliation: Cheng

Chi University, Taiwan.

Antonietta Mira, Ph. D. Thesis, University of Minnesota, October 1998. Affiliation: Insubria

University, Varese, Italy.

Murali Haran, Ph. D. Thesis, University of Minnesota, May 2003 (supervised jointly with B.

Carlin). Affiliation: Pennsylvania State University.

Day Feng, Ph. D. Thesis, University of Iowa, May 2008. Affiliation: Merck & Co, New Jersey.

Jung-Eun Song, Ph. D. Thesis, University of Iowa, June 2008, Affiliation: Electrical Geodesics,

Eugene, OR.

Thesis Advisor

Howard M. Taylor (U. of Delaware, retired).

2

SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A. SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty and Other Senior Associates
 (List each separately with title, A.7. show number in brackets) CAL ACAD SUMR

$ $1.

2.

3.

4.

5.

6. () OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. () TOTAL SENIOR PERSONNEL (1 - 6)

B. OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. () POST DOCTORAL SCHOLARS

2. () OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. () GRADUATE STUDENTS

4. () UNDERGRADUATE STUDENTS

5. () SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. () OTHER

 TOTAL SALARIES AND WAGES (A + B)

C. FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

 TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D. EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

 TOTAL EQUIPMENT

E. TRAVEL 1. DOMESTIC (INCL. CANADA, MEXICO AND U.S. POSSESSIONS)

2. FOREIGN

F. PARTICIPANT SUPPORT COSTS

1. STIPENDS $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

 TOTAL NUMBER OF PARTICIPANTS () TOTAL PARTICIPANT COSTS

G. OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

 TOTAL OTHER DIRECT COSTS

H. TOTAL DIRECT COSTS (A THROUGH G)

I. INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J. TOTAL DIRECT AND INDIRECT COSTS (H + I)

K. RESIDUAL FUNDS

L. AMOUNT OF THIS REQUEST (J) OR (J MINUS K) $ $

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET

1YEAR

1

University of Iowa

Luke-jon

Luke-jon

Luke-jon

 Tierney

 Tierney

 Tierney - none 0.00 0.00 2.00 33,899

 0 0.00 0.00 0.00 0
1 0.00 0.00 2.00 33,899

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
0 20,258
0 0
0 0
0 0

 54,157
13,748

 67,905

8,654$HP 9400 Workstation

 8,654
2,500
2,500

0
0
0
0

0 0

2,000
2,000

0
2,400

0
4,954

 11,354
 92,913

39,653
Indirect cost (base excludes equipment and stipend) (Rate: 50.0000, Base: 79305)

 132,566
0

 132,566
0

John Massa

SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A. SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty and Other Senior Associates
 (List each separately with title, A.7. show number in brackets) CAL ACAD SUMR

$ $1.

2.

3.

4.

5.

6. () OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. () TOTAL SENIOR PERSONNEL (1 - 6)

B. OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. () POST DOCTORAL SCHOLARS

2. () OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. () GRADUATE STUDENTS

4. () UNDERGRADUATE STUDENTS

5. () SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. () OTHER

 TOTAL SALARIES AND WAGES (A + B)

C. FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

 TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D. EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

 TOTAL EQUIPMENT

E. TRAVEL 1. DOMESTIC (INCL. CANADA, MEXICO AND U.S. POSSESSIONS)

2. FOREIGN

F. PARTICIPANT SUPPORT COSTS

1. STIPENDS $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

 TOTAL NUMBER OF PARTICIPANTS () TOTAL PARTICIPANT COSTS

G. OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

 TOTAL OTHER DIRECT COSTS

H. TOTAL DIRECT COSTS (A THROUGH G)

I. INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J. TOTAL DIRECT AND INDIRECT COSTS (H + I)

K. RESIDUAL FUNDS

L. AMOUNT OF THIS REQUEST (J) OR (J MINUS K) $ $

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET

2YEAR

2

University of Iowa

Luke-jon

Luke-jon

Luke-jon

 Tierney

 Tierney

 Tierney - none 0.00 0.00 2.00 34,916

 0 0.00 0.00 0.00 0
1 0.00 0.00 2.00 34,916

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
0 20,866
0 0
0 0
0 0

 55,782
14,593

 70,375

 0
2,500
2,500

0
0
0
0

0 0

2,000
2,000

0
2,400

0
4,954

 11,354
 86,729

40,888
Indirect costs (base excludes tuition stipend) (Rate: 50.0000, Base: 81775)

 127,617
0

 127,617
0

John Massa

SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A. SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty and Other Senior Associates
 (List each separately with title, A.7. show number in brackets) CAL ACAD SUMR

$ $1.

2.

3.

4.

5.

6. () OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. () TOTAL SENIOR PERSONNEL (1 - 6)

B. OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. () POST DOCTORAL SCHOLARS

2. () OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. () GRADUATE STUDENTS

4. () UNDERGRADUATE STUDENTS

5. () SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. () OTHER

 TOTAL SALARIES AND WAGES (A + B)

C. FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

 TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D. EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

 TOTAL EQUIPMENT

E. TRAVEL 1. DOMESTIC (INCL. CANADA, MEXICO AND U.S. POSSESSIONS)

2. FOREIGN

F. PARTICIPANT SUPPORT COSTS

1. STIPENDS $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

 TOTAL NUMBER OF PARTICIPANTS () TOTAL PARTICIPANT COSTS

G. OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

 TOTAL OTHER DIRECT COSTS

H. TOTAL DIRECT COSTS (A THROUGH G)

I. INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J. TOTAL DIRECT AND INDIRECT COSTS (H + I)

K. RESIDUAL FUNDS

L. AMOUNT OF THIS REQUEST (J) OR (J MINUS K) $ $

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET

3YEAR

3

University of Iowa

Luke-jon

Luke-jon

Luke-jon

 Tierney

 Tierney

 Tierney - none 0.00 0.00 2.00 35,963

 0 0.00 0.00 0.00 0
1 0.00 0.00 2.00 35,963

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
0 21,492
0 0
0 0
0 0

 57,455
15,030

 72,485

 0
2,500
2,500

0
0
0
0

0 0

2,000
2,000

0
2,400

0
4,954

 11,354
 88,839

41,943
Indirect costs (base excludes tuition stipend) (Rate: 50.0000, Base: 83885)

 130,782
0

 130,782
0

John Massa

SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A. SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty and Other Senior Associates
 (List each separately with title, A.7. show number in brackets) CAL ACAD SUMR

$ $1.

2.

3.

4.

5.

6. () OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. () TOTAL SENIOR PERSONNEL (1 - 6)

B. OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. () POST DOCTORAL SCHOLARS

2. () OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. () GRADUATE STUDENTS

4. () UNDERGRADUATE STUDENTS

5. () SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. () OTHER

 TOTAL SALARIES AND WAGES (A + B)

C. FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

 TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D. EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

 TOTAL EQUIPMENT

E. TRAVEL 1. DOMESTIC (INCL. CANADA, MEXICO AND U.S. POSSESSIONS)

2. FOREIGN

F. PARTICIPANT SUPPORT COSTS

1. STIPENDS $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

 TOTAL NUMBER OF PARTICIPANTS () TOTAL PARTICIPANT COSTS

G. OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

 TOTAL OTHER DIRECT COSTS

H. TOTAL DIRECT COSTS (A THROUGH G)

I. INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J. TOTAL DIRECT AND INDIRECT COSTS (H + I)

K. RESIDUAL FUNDS

L. AMOUNT OF THIS REQUEST (J) OR (J MINUS K) $ $

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET

Cumulative

C

University of Iowa

Luke-jon

Luke-jon

Luke-jon

 Tierney

 Tierney

 Tierney - none 0.00 0.00 6.00 104,778

 0.00 0.00 0.00 0
1 0.00 0.00 6.00 104,778

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
0 62,616
0 0
0 0
0 0

 167,394
43,371

 210,765

8,654$

 8,654
7,500
7,500

0
0
0
0

0 0

6,000
6,000

0
7,200

0
14,862

 34,062
 268,481

122,484

 390,965
0

 390,965
0

John Massa

Budget Justification

Domestic Travel

To support the proposed research it would be helpful to be able to attend one national statistical

meeting and one computer science meeting each year.

Foreign Travel

To support the proposed research and present results of the research it would be helpful to be able

to attend one international statistics or computer science meeting each year, and to be able to meet

with international collaborators on the R project at least once every two years.

Workstation

The proposal includes a request for $8,654 for a dual quad-core processor HP 9400 AMD x86_64

Linux workstation with 32 GB of memory. This is needed to provide the processing power required

for the project, to provide a test bed for parallel and threaded computation, and for exploring the

impact of using very large data sets as arise, for example, in neuroimaging applications.

Materials and Supplies

Materials and supplies required by this project include books and manuals, computer science jour-

nals, and computer software (in particular statistical software systems and compilers).

Graduate Student Support

A graduate assistant will help with programming tasks, and experience with such tasks may lead to

a dissertation in this area. I have not yet identified a particular individual; I hope to do so during

the coming academic year. Requested support is for a graduate RA stipend for 12 months and a

tuition fellowship, in accordance with the University of Iowa gradate employee contract.

Computer Services

The Computer Support Group provides storage space, backup, and software support for the work-

stations that will be used in this project.

1

Current and Pending Support
(See GPG Section II.C.2.h for guidance on information to include on this form.)

The following information should be provided for each investigator and other senior personnel. Failure to provide this information may delay consideration of this proposal.

Investigator:
Other agencies (including NSF) to which this proposal has been/will be submitted.

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Summ:

*If this project has previously been funded by another agency, please list and furnish information for immediately preceding funding period.

USE ADDITIONAL SHEETS AS NECESSARYPage G-

Luke-jon Tierney

Computing Environments for Statistics

NSF
295,663 06/01/06 - 05/31/09

University of Iowa
0.00 0.00 2.00

Regularized Classification & Survival Analysis for
Expression Profiling of Cancer

NIH
1,161,536 01/01/08 - 12/31/11

University of Iowa (PI: J. Huang)
0.90 0.00 0.00

Travel Support for the Directions in Statistical Computing
(DSC) 2007 Meeting

NSF
10,000 03/01/07 - 02/28/09

University of Iowa
0.00 0.00 0.00

ParallelR: Parallel Computing for Biomedical Research

NIH
42,462 12/01/08 - 11/30/11

Duke University (PI: R. Pietrobon)
0.45 0.00 0.00

Travel Support for the Directions in Statistical Computing
(DSC) 2009 Meeting

NSF
15,000 07/01/09 - 06/30/11

University of Iowa
0.00 0.00 0.00

1

Current and Pending Support
(See GPG Section II.C.2.h for guidance on information to include on this form.)

The following information should be provided for each investigator and other senior personnel. Failure to provide this information may delay consideration of this proposal.

Investigator:
Other agencies (including NSF) to which this proposal has been/will be submitted.

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount: $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Summ:

*If this project has previously been funded by another agency, please list and furnish information for immediately preceding funding period.

USE ADDITIONAL SHEETS AS NECESSARYPage G-

Luke-jon Tierney

Computing Environments for Statistics

NSF
390,965 06/01/09 - 05/31/12

University of Iowa
0.00 0.00 2.00

22

FACILITIES, EQUIPMENT & OTHER RESOURCES

FACILITIES: Identify the facilities to be used at each performance site listed and, as appropriate, indicate their capacities, pertinent

capabilities, relative proximity, and extent of availability to the project. Use "Other" to describe the facilities at any other performance

sites listed and at sites for field studies. USE additional pages as necessary.

Laboratory:

Clinical:

Animal:

Computer:

Office:

Other:

MAJOR EQUIPMENT: List the most important items available for this project and, as appropriate identifying the location and pertinent

capabilities of each.

OTHER RESOURCES: Provide any information describing the other resources available for the project. Identify support services

such as consultant, secretarial, machine shop, and electronics shop, and the extent to which they will be available for the project.

Include an explanation of any consortium/contractual arrangements with other organizations.

Available equipment: Approx. 30 Linux x86_64 workstations, 1 Mac OS X
workstation, and a Beowulf cluster of 21 quad-core Linux x86_64 nodes.
File server, backup, and software support provided by Division of
Mathematical Sciences Computer Support Group.

Shaeffer Hall 209; standard office furnishings.

FACILITIES, EQUIPMENT & OTHER RESOURCES

Continuation Page:

NSF FORM 1363 (10/99)

COMPUTER FACILITIES (continued):

