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The positive-definiteness constraint is the most awkward stumbling block in modelling
the covariance matrix. Pourahmadi’s (1999) unconstrained parameterisation models
covariance using covariates in a similar manner to mean modelling in generalised linear
models. The new covariance parameters have statistical interpretation as the regression
coefficients and logarithms of prediction error variances corresponding to regressing a
response on its predecessors. In this paper, the maximum likelihood estimators of the
parameters of a generalised linear model for the covariance matrix, their consistency and
their asymptotic normality are studied when the observations are normally distributed.
These results along with the likelihood ratio test and penalised likelihood criteria such as
 for model and variable selection are illustrated using a real dataset.

Some key words: Asymptotic normality; Cholesky decomposition; Fisher information; Newton–Raphson
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1. I

This follow-up paper to Pourahmadi (1999) continues the author’s programme to apply
the familiar iterative three-stage statistical model-fitting process to covariance matrices.
The goal is to develop a flexible, systematic and data-based methodology for modelling
covariance matrices similar to the generalised linear model framework for mean modelling.
The success of the latter is partly because a link function is used to induce unconstrained
parameterisation of the mean vector.

Unfortunately, most approaches to modelling covariance matrices do not heed
adequately the positive-definiteness constraint. However, there is recent progress in uncon-
strained reparameterisation using either the matrix-logarithm or variants of the Cholesky
decomposition of a covariance matrix (Leonard & Hsu, 1992; Chiu, Leonard & Tsui,
1996; Pinheiro & Bates, 1996; Pourahmadi, 1999). These references along with Diggle,
Liang & Zeger (1994, Ch. 4, 5), provide good reviews of the literature on modelling covari-
ance matrices. Using the fact that the matrix-logarithm of a positive-definite matrix is
symmetric but otherwise unconstrained, Chiu et al. (1996) defined the class of matrix-
logarithm covariance models by logS=a1U1+ . . .+a

q
U
q
, where the U

i
’s are known

symmetric matrices and the a
i
’s are unconstrained. The a

i
’s, however, do not always have

simple statistical interpretation. Pourahmadi (1999) shows that the modified Cholesky
decomposition of S−1 offers a simple unconstrained and statistically meaningful reparam-
eterisation of the covariance matrix. In fact, for a random vector y=(y1 , . . . , yn)∞ with
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mean vector m and positive-definite covariance matrix S= (s
kl
), there are a unique unit

lower triangular matrix T with 1’s as diagonal entries and a unique diagonal matrix D
with positive diagonal entries such that

T ST ∞=D or S−1=T ∞D−1T . (1)

Fortunately, it is easy to interpret T and D statistically: the below-diagonal entries of T
are the negatives of the coefficients of y@

t
=m

t
+Wt−1

j=1
w
tj
(y
j
−m

j
), the linear least-squares

predictor of y
t
based on its predecessors y

t−1
, . . . , y1 , and the diagonal entries of D are

the prediction error variances s2
t
=var (y

t
−y@

t
), for 1∏t∏n. Since w

tj
and log s2

t
are un-

constrained, we may model them in terms of covariates. To this end, for t=1, . . . , n and
j=1, . . . , t−1, consider the models

m
t
=x∞

t
b, log s2

t
=z∞

t
l, w

tj
=z∞

tj
c, (2)

where x
t
, z

t
and z

tj
are p×1, q×1 and d×1 vectors of known covariates, and b=

(b1 , . . . , b
p
)∞, l= (l1 , . . . , l

q
)∞ and c= (c1 , . . . , c

d
)∞ are parameters for the means, variances

and correlations of y, respectively. Note that the last two equations in (2) provide a
generalised linear model for a covariance matrix with a link function g(S )=
2I−T−T ∞+log D (McCullagh & Nelder, 1989; Pourahmadi, 1999, p. 680). Our goal
here is to study the maximum likelihood estimator of the parameters in (2).

The outline of the paper is as follows. Section 2 deals with the maximum likelihood
estimation of mean and covariance, i.e. variance and correlation, parameters for normal
data. The loglikelihood function has three distinct representations corresponding to the
three submodels for mean, variance and correlation in (2), and surprisingly it is quadratic
in the correlation parameters c as it is in the means. Consequently, closed-form solution
of the likelihood equation is possible for these parameters when l is fixed. The likelihood
equation for the latter, however, is nonlinear, and an iterative Newton–Raphson method
is developed with computational complexity similar to that for the joint modelling of
mean and variance heterogeneity (Smyth, 1989; Verbyla, 1993). Strong consistency and
asymptotic normality of the maximum likelihood estimators are studied. The conditions
and results are simpler than, but similar in spirit to, those in Chiu et al. (1996) for matrix-
logarithm covariance models. The methodology, along with the likelihood ratio test and
penalised likelihood criteria such as  for model and variable selection, is illustrated in
§ 3 using Kenward’s (1987) cattle data.

A limitation of our approach based on (1) is its implicit assumption of an ordering in
the responses. While this ordering is natural in the longitudinal setting, it may not be the
case in some other situations. Of course, a reparameterisation of the covariance matrix
not depending on the coordinate system is desirable. A good example of this is Chiu et al.
(1996). However, comparing their transformation with (1) suggests that there might be a
trade-off between coordinate-free parameterisation and statistical interpretability of the
ensuing parameters. In the absence of natural ordering in the response one may rely either
on the qualitative ordering proposed by Brown, Le & Zidek (1994, p. 88) in the context
of specifying priors for S or decomposing the joint distribution of a set of random variables
into a running sequence of conditional distributions as in graphical models (Cox &
Wermuth, 1996, Ch. 3).

2. T     

2·1. T he likelihood function

For clarity, simplicity of presentation and notation we consider only standard multivari-
ate data or balanced longitudinal data (Diggle et al., 1994, p. 16). For i=1, 2, . . . , m, we
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assume that y
i
~N(X

i
b, S ) are independent n-vectors, where y

i
may stand for the n

repeated measures on the ith subject, X
i
its n×p design matrix, i.e. covariates, and b its

p×1 vector of mean parameters. We assume throughout that the components T and D
of the covariance matrix S are modelled as in (2).

It is known (Pourahmadi, 1999) that the loglikelihood function has three representations
corresponding to the three submodels in (2):

−2L (b, l, c)=m log |S |+ ∑
m

i=1
(y
i
−X

i
b)∞S−1(y

i
−X

i
b)

=m ∑
n

t=1
log s2

t
+ ∑

n

t=1


t

s2
t

=m ∑
n

t=1
log s2

t
+ ∑

m

i=1
{r
i
−Z(i)c}∞D−1{r

i
−Z(i)c}, (3)

where r
i
=y

i
−X

i
b= (r

it
)n
t=1

, and 
t
and Z(i), both depending on the r

i
’s, are defined

below. The n×d matrix Z(i) is defined by

Z(i)=(z(i, 1), . . . , z(i, n))∞, z(i, t)= ∑
t−1

j=1
r
ij
z
tj
, (4)

where z
tj

is the d×1 vector of covariates associated with the w
tj
.

The matrices W
t
and W defined below are used in the Newton–Raphson algorithm and

the asymptotic distribution of the estimator of c. From (4) we have that

E{z(i, t)z∞(i, t)}= ∑
t−1

k=1
∑
t−1

l=1
E(r

ik
r
il
)z
tk
z∞
tl
= ∑

t−1

k=1
∑
t−1

l=1
s
kl
z
tk
z∞
tl
=W

t
, (5)

W=E{Z∞(i )D−1Z(i)}= ∑
n

t=1
s−2
t

E{z(i, t)z∞(i, t)}= ∑
n

t=1
s−2
t

W
t
. (6)

Finally, we note that z(i, 1)=0 so that the first row of Z(i) is zero and hence W1=0.
To define 

t
appearing in (3), let r@

it
be the predictor of r

it
based on its predecessors

r
i,t−1

, . . . , r
i1

and let r(t)=(r
it
)m
i=1

be the vector of centred observations made at the tth
occasion on all m subjects and r@(t)=(r@

it
)m
i=1

. Then 
t
=Wm

i=1
(r
it
−r@

it
)2 is indeed the sum

of squared prediction errors or the residual sum of squares from the analysis of covariance
of r(t) with r(t−1), . . . , r(1) as covariates (Kenward, 1987). It follows from (2) and (4)
that r@

it
=z∞(i, t)c and hence


t
= ∑

m

i=1
{r
it
−z∞(i, t)c}2. (7)

This representation is useful when computing its derivatives with respect to c, but the
former is more convenient for numerical computation, finding the moments and distri-
bution of the random vector R= (1 , . . . , 

n
)∞. Note that the matrix T creates the

vector of successive prediction errors for any random vector, with mean zero and covari-
ance S, so that T r

i
=r

i
−r@

i
, and hence the entries to T r

i
are independent random variables.

Some useful consequences of this property of T are summarised in the following lemma.

L 1. W ith notation as in (1), (3), (4) and (7) we have:
(a) (r

it
−r@

it
)n
t=1
=T r

i
~N(0, D), for i=1, 2, . . . , m;

(b) E(
t
)=ms2

t
, E(

t
×

s
)=m2s2

t
s2
s
, for sNt, and E(

t
)2= (2m+m2 )s4

t
;

(c) 
t
/s2
t
~x2

m
, for t=1, 2, . . . , n;
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(d) with r= (r∞
1
, . . . , r∞

m
)∞ and 1

n
= (1, . . . , 1)∞ we have R=(T r∞)(2)1

n
, where, for a matrix

A= (a
ij
), A(2)= (a2

ij
).

In view of (c), for given b and c, the second representation in (3) is the loglikelihood
for a variance model with 

t
as the response, and corresponds to a generalised linear

model with gamma errors and known scale parameter equal to 2 (Smyth, 1989). Part (d)
suggests a simple procedure for computing R.

2·2. T he score function and the Fisher information

This section is devoted to computing the score function, the Hessian matrix and the
Fisher information for the parameters. It is convenient to write the p+q+d parameters
of model (2) as h= (b∞, l∞, c∞)= (b∞, a∞)∞ and to partition the score function, the Hessian
matrix, the Fisher information and its inverse as

U(h)=
∂L (h)

∂h
= (U∞

1
(b), U∞

2
(l), U∞

3
(c))∞, H= (H

ij
)3
i,j=1

, I
h
=(I

ij
(h ))3

i,j=1
, I−1

h
= (I ij(h )),

respectively.
We compute the components of I

h
as the negative of the expected value of ∂U/∂h.

Computation of H23 and I23 are more challenging and are discussed in the Appendix. It
follows from (3), after some algebra, that

U1 (b)= ∑
m

i=1
X∞
i
S−1r

i
, I11= ∑

m

i=1
X∞
i
S−1X

i
,

U2 (l)=1
2
Z∞(D−1R−m1

n
), I22=1

2
mZ∞Z,

U3 (c)= ∑
m

i=1
Z∞(i )D−1{r

i
−Z(i)c}, I33=mW,

(8)

where Z= (z1 , . . . , zn )∞ is the design matrix for the log s2
t
’s in (2). Note that U1 and U3

are linear in b and c so that no iteration is needed for solving these score equations if l
is fixed.

Next, we compute H22 and the entries of H12 and H13 , and show that I12 and I13 are
zero matrices so that the mean parameter b and the covariance parameters l, c are orthog-
onal. Since W depends on l and c, we have

∂U1
∂l
j
= ∑

m

i=1
X∞
i A∂S−1∂l

j
B ri , ∂U1

∂c
j
= ∑

m

i=1
X∞
i A∂S−1∂c

j
B ri ,

H22=−
1

2
∑
m

t=1
s−2
t


t
z
t
z∞
t
, H33=− ∑

m

i=1
Z∞(i)D−1Z(i).

Since E(r
i
)=0, it follows that

I12=E A−∂U1
∂l B=0, I13=E A−∂U1

∂c B=0.

The matrix H and the Fisher information I
h

can now be constructed.

2·3. T he maximum likelihood estimators of b and c

Since the score functions U1 and U3 in (8) are linear in b and c, the maximum likelihood
estimators of b and c have closed forms and hence various aspects of their finite sample
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distributions can be assessed through either theoretical calculations or numerical simu-
lations provided that l is fixed. This is particularly attractive for the new correlation
parameter c about which and its estimator little is currently known. The score function
U2 is nonlinear in l and an iterative method for computing the maximum likelihood
estimator of l is given in § 2·4.

Setting the score functions U1 and U3 to zero we obtain

b@=b@ (S )=A ∑m
i=1

X∞
i
S−1X

iB−1 ∑m
i=1

X∞
i
S−1y

i
,

c@=c@(b, D)=q ∑m
i=1

Z∞(i )D−1Z(i)r−1 ∑m
i=1

Z∞(i )D−1r
i
,

(9)

where by c@=c@(b, D) we mean an estimator of c assuming b and D are known. This
convention is used throughout. Note the striking similarities between the forms of the
two estimators. In a sense, c@ is easier to work with than b@ computationally since D is
diagonal. On the other hand, while the exact distribution of b@ is known and given by
b@~N(b, I11 ), that of c@ is unknown. However, it can be expressed in terms of functionals
of certain quadratic and bilinear forms in normal random variables. In fact, using (4) for
any i, we have

Z(i)∞D−1r
i
= ∑

n

t=1
s−2
t

r
it
z(i, t)= ∑

n

t=1
s−2
t
∑
t−1

j=1
(r
it
r
ij
)z
tj
,

Z(i)∞D−1Z(i)= ∑
n

t=1
s−2
t

z(i, t)z(i, t)∞= ∑
n

t=1
s−2
t
∑
t−1

k=1
∑
t−1

l=1
(r
ik
r
il
)z
tk
z∞
tl
.

(10)

These formulae are useful for the numerical calculation of c@ as well as for simulating data
to assess its finite sample distribution. The following simple examples illuminate what
is needed.

Example 1. (a) Consider w
tj
=c1 , for t=2, . . . , n and j=1, . . . , t−1. Then d=1, z

tj
=1

and, from (9) and (10), the maximum likelihood estimator of c1 is given by

c@1=
Wm
i=1

Wn
t=1

s−2
t

Wt−1
k=1

r
it
r
ik

Wm
i=1

Wn
t=1

s−2
t

Wt−1
k=1

Wt−1
l=1

r
ik
r
il
.

(b) Consider w
tj
=c2 (t− j )−1, for t=2, . . . , n and j=1, 2, . . . , t−1. Then d=1,

z
tj
=( t− j )−1 and, from (9) and (10), the maximum likelihood estimator of c2 is given by

c@2=
Wm
i=1

Wn
t=1

s−2
t

Wt−1
k=1

r
it
r
ik
(t− j )−1

Wm
i=1

Wn
t=1

s−2
t

Wt−1
k=1

Wt−1
l=1

r
ik
r
il
(t− j )−2

.

2·4. T he Newton–Raphson algorithm

The iterative Newton–Raphson algorithm updates current values hA to h@ using

h@=hA−H−1 (hA )U(hA ). (11)

The Fisher scoring algorithm replaces the Hessian matrix H in (11) by its expectation
I
h
. Since I12 and I13 are zero matrices, in this approach b@ and a@ are obtained by solving

separate equations, and the former is a generalised least squares estimator. An iterative
Fisher scoring method for obtaining b@ and a@ , using an inner loop, Step 3, is as follows.
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Step 1. Select an initial value bA for b.

Step 2. Compute S=m−1Wm
i=1

(y
i
−X

i
bA )(y

i
−X

i
bA )∞ and its factors TB and DB in (1) to

be used as initial values for T and D in the next step.

Step 3. For the inner loop, compute aA= (lA ∞, cA∞)∞ by solving the last two equations in (8)
using the Newton–Raphson iterative method with Fisher scoring. At convergence, compute
D(lA), T (cA) and SB−1=T (cA)∞D−1 (lA)T (cA).

Step 4. Update the value bA using

b@=A ∑m
i=1

X∞
i
SB−1X

iB−1 ∑m
i=1

X∞
i
SB−1y

i
.

Step 5. Stop the process if b@jbA and take b@ as an estimate of b. The estimates of a, T ,
D and S are given by a@=aA , TC =T (cA), DC=D(lA ) and SC=SB . Otherwise, repeat Steps 2–4
replacing bA by b@ .

A convenient initial value for b is its ordinary least-squares estimate. We note that the
last quadratic form in (3) can be interpreted as the weighted least-squares criterion for
estimating the parameters b and c of the dynamic linear model

y
i
=X

i
b+Z(i)c+e

i
(i=1, . . . , m), (12)

where cov(e
i
)=D. The phrase dynamic linear model is appropriate since the Z(i) depends

on the response y
i
. This new set-up suggests an iteratively reweighted least-squares method

for estimating (b∞, c∞)∞ and the parameters l of D, a familiar approach in the context of
generalised linear models (McCullagh & Nelder, 1989). A referee has pointed out that
various modifications of the maximum likelihood method such as profile, modified profile
and integrated likelihood (Leonard, 1982; Berger, Liseo & Wolpert, 1999) could produce
less complicated solutions by exploiting the simple structure of (3). These alternatives, a
Bayesian analysis and the numerical properties of the above Newton–Raphson algorithm
are currently under study for a follow-up paper.

2·5. Asymptotic distribution of the estimators

In this section the consistency and asymptotic normality of the maximum likelihood
estimators of b, l and c are presented under some mild regularity conditions. Throughout
this section we assume that

(i) model (2) is correct,
(ii ) the parameter spaces for b, l and c are compact subspaces of Rp, Rq and Rd,

respectively, and
(iii ) h0= (b∞

0
, l∞
0
, c∞
0
)∞ the true value of h= (b∞, l∞, c∞)∞ is in the interior of the parameter

space for h.
Our proof, which is simpler than but in the spirit of Chiu et al. (1996), is sketched in the
Appendix.

T 1. Suppose that the design matrices in (2) and X
i

are all bounded compo-
nentwise, i.e. all of their components are bounded by a single finite real number, and that

lim
m�2

1

m
∑
m

i=1
X∞
i
SX

i
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exists and is finite. T hen
(a) the maximum likelihood estimator h@= (b@ ∞, l@ ∞, c@∞)∞ is strongly consistent for h0=

(b∞
0
, l∞
0
, c∞
0
)∞;

(b) the maximum likelihood estimator h@ is asymptotically normally distributed, with

√m Cb@−b0
l@−l0
c@−c0D�N(0, I−1

h
0

)

in distribution as m�2.

From the block-diagonal form of I
h
, it follows immediately that b@ and a@= (l@ ∞, c@∞)∞ are

asymptotically independent. Since (b@ ∞, a@ ∞)∞ is a consistent estimator for h0 , the asymptotic
covariance matrix I11(h0) of b@ can be estimated by (m−1Wm

i=1
X∞
i
SC−1X

i
)−1, where SC=

S(a@ ). Similarly, the asymptotic covariance matrix of a@ can be estimated. In the same vein,
the empirical Fisher information matrix

A− 1

m

∂2L (h )

∂h ∂h∞ K
h=h@
B−1

can be used to approximate the asymptotic covariance matrix of h@ .

3. T  

Kenward’s (1987) cattle study deals with cattle receiving two treatments A and B for
intestinal parasites. They were weighed n=11 times over a 133-day period. The first 10
measurements on each animal were made at two-week intervals and the final measurement
was made after one week. Measurement times were common across animals and are
rescaled to t=1, 2, . . . , 10, 10·5; no observation was missing. Of 60 cattle, m=30 received
treatment A and the other 30 received treatment B. Zimmerman & NúnAez-Antón (1997)
rejected the equality of the two within treatment-group covariance matrices using the
classical likelihood ratio test. Thus, it is advisable to study each treatment group’s covari-
ance matrix separately; here we report our results for the group A cattle.

For estimating the covariance structure of a dataset it is generally believed (Diggle et al.,
1994, p. 64) that a sensible strategy is to use an over-elaborate or saturated model for the
mean response profile. Thus, assuming a saturated mean model with n=11 parameters,
that is m= (m1 , . . . , m11)∞, we identify models for the 11×11 covariance matrix S of the
data using the regressograms (Pourahmadi, 1999) and compute the maximum likelihood
estimate of their parameters.

Let S be the sample covariance matrix of the group A cattle. Given its factors TB and DB
as in (1), plots of wA

tj
against j and log sA 2t against t, called its regressograms, are extremely

helpful in identifying parsimonious models for T and log D or S. Pourahmadi (1999)
identified and estimated the following cubic polynomials for t=1, 2, . . . , 11 and j=
1, . . . , t−1:

log sA2t=3·37−1·47t+0·24t2−0·93t3+e
tv
,

wA
tj
=0·18−1·7(t− j )+1·64(t− j )2−1·11(t− j )3+e

tjc
.

(13)
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This shows how a data-based covariance modelling procedure can model a 66-parameter
covariance matrix parsimoniously using just 8 unconstrained parameters.

The estimates in (13) are the ordinary least-squares estimates of the parameters. In the
rest of this section we compute the maximum likelihood estimates of the parameters and
some of its nested submodels. To minimise notation, we use Poly (q, d) as a shorthand for
polynomial models in t and t− j of degree q for log s2

t
and degree d for w

tj
, respectively.

Note that a Poly (q, d) model for S has q+d+2 parameters. We have used S-Plus (Specter,
1994) for computations where polynomial regressions are fitted using orthogonal design
matrices. Thus, the coefficients here are those corresponding to the orthogonal design
matrices.

While modelling variances or entries of log D is perceived important in the literature of
correlated data, the same importance is not accorded to modelling correlations or the
entries of T . To emphasise the importance of modelling the latter, we fit Poly (3, d) models
for d=0, 1, 2, 3 to S and compute the maximum likelihood estimates of their parameters,
the maximised loglikelihood functions and the corresponding  values. These values are
summarised in Tables 1 and 2, where Poly(3) is a cubic in t for the nonredundant elements
in a diagonal S. Recall that , a penalised likelihood criterion, for a model selection
situation is defined as

=−
2

m
L max+p

log m

m
,

where m is the sample size, L max is the maximised loglikelihood for the model under
consideration and p is its number of parameters. Smaller values of  are associated with
better-fitting models.

Table 1. Values of L max , number of parameters and 
for several models. T he last four rows are from

Zimmerman & NúnAez-Antón (1997)

Model L max Number of parameters 

Unstructured S −1019·69 66 75·35
Poly(3, 3) −1049·01 8 70·84
Poly(3, 2) −1080·08 7 72·80

Poly(3, 1) −1131·61 6 76·09
Poly(3, 0) −1215·35 5 81·59
Poly(3) −1377·43 4 92·28

Unstructured (2) −1035·98 30 72·47
Structured (2) −1054·13 8 71·18
Stationary (2) −1062·89 3 71·20

Structured (2)
with l1=l2=1 −1054·20 6 70·96

By scanning the L max and  columns in Table 1, we see that the cost of not modelling
T properly is evident in both the decrease in L max and the increase in the  values. The
last four rows of Table 1, from Zimmerman & NúnAez-Antón (1997), are included here for
ease of comparison and reference. An unstructured antedependence model of order 2, or
an (2) model for short, corresponds to (2) with w

tj
=0 for t− j>2, which has 30

parameters, 11 on the diagonal of D and 10+9=19 on the first two subdiagonals of T .
These can be reduced by introducing the following structure (Zimmerman & NúneAz-
Antón, 1997): if t1<t2< . . .<t

n
are the measurement times for an arbitrary subject, then
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Table 2. Maximum likelihood estimates of the
variance parameters l and correlation param-
eters c for several nested Poly (q, d) models for
the covariance matrix of the group A cattle

data

Model j=1 j=2 j=3 j=4

Poly(3, 3) l 3·52 −1·14 0·30 −0·85
c 0·18 −1·71 1·64 −1·11

Poly(3, 2) l 3·71 −0·69 0·54 −0·62

c 0·18 −1·71 1·64

Poly(3, 1) l 4·02 −0·22 0·63 −0·39
c 0·18 −1·71

Poly(3, 0) l 4·53 0·12 0·59 0·23
c 0·18

Poly(3) l 5·51 1·50 −0·17 0·04

for i=3, . . . , n and j=1, 2 set

w
ij
=wtlji −tlji−jj

, s2
i
=s2,

where w1 , w2 , l1 , l2 , w21 , s2
1
, s2

2
and s2 are the new parameters of T and D. Judging from

the  values, the Poly(3, 3) model is clearly the model of choice for S which happens
to be close to the structured  (2) model with l1=l2=1 (Zimmerman & NúnAez-
Antón, 1997).

Alternatively, nested hypotheses about model parameters can be tested using likelihood
ratio tests. For example, let L 1 denote the maximised loglikelihood for the Poly(3, 3)
model for S and let L 0 denote the maximised loglikelihood for the submodel Poly(3, 2).
We can test the null hypothesis that the submodel holds by comparing 2(L 1−L 0)=62·14
to the appropriate percentage point of the chi-squared distribution with v=1 degree of
freedom. The null hypothesis is clearly rejected so that the third power of t− j is kept
in (13).

From Table 2, it is evident that there are considerable changes in the magnitude and
sign of the variance parameters l, as one moves away along d=3, 2, 1, 0 from the
Poly(3, 3) model which is preferred by the  and the likelihood ratio test. However, the
values of the correlation parameters c do not change, because the design matrix employed
in our calculations is orthogonal. The variances of the respective components of l@ and
c@ for the final Poly(3, 3) model are

(0·00606, 0·06667, 0·06667, 0·06667, 0·00001, 0·00345, 0·01085, 0·02244)/30.
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A

Proofs

Computations of H23 and I23 . It is evident from U2 in (8) that we need to compute ∂R/∂c
and hence ∂

t
/∂c for t=1, 2, . . . , n, along with their expected values. From (7) we have, for

t=1, 2, . . . , n,

∂
t

∂c
=2 ∑

m

i=1
{−r

it
z(i, t)+z(i, t)z∞(i, t)c}, (A1)

and using (5) we obtain

E A∂
t

∂c B=2m A− ∑t−1
k=1

s
tk
z
tk
+ ∑

t−1

k=1
∑
t−1

l=1
s
kl
z
tk
z∞
tl

cB . (A2)

Substituting z∞
tl

c by w
tl

in (A2) and collecting similar terms we get

E A∂
t

∂c B=2m ∑
t−1

k=1
A ∑t−1
l=1

s
kl

w
tl
−s

tkB ztk=−2m ∑
t−1

k=1
a
kt
z
tk
=−2mb

t
, (A3)

where a
kt

is the (k, t)th entry of the matrix A=ST ∞, and, for t=1, . . . , n,

b
t
= ∑

t−1

k=1
a
kt
z
tk
,

which is similar to z(i, t) in (4) but with r
ij

replaced by a
kt
. Thus, from (8), (A1) and (A3), we get

H23=
1

2
Z∞D−1

∂R
∂c

, I23=E A−∂U2
∂c B=mZ∞D−1B,

where B= (b1 , . . . , bn )∞ resembles the definition of Z(i) in (4).

Sketch of proof of T heorem 1. Our proof is essentially the same as the proofs of Theorems 1
and 2 in Chiu et al. (1996). Thus, we point out only those differences in computing certain moments
that are mostly due to our different but certainly smoother reparameterisation of S. A more
complete proof of the theorem is available from the author upon request.

(a) Let L
i
=L

i
(h )= log f (y

i
; h ) be the log of the density of y

i
. Then, ignoring the constant

Dn log 2p, we obtain

L
i
=−

1

2
∑
n

t=1
log s2

t
−

1

2
(y
i
−X

i
b)∞S−1(y

i
−X

i
b)=−

1

2 A ∑n
t=1

z
tB∞ l− 1

2
r∞
i
S−1r

i
.

Next, we compute E0 (L i ) and V0 (L i ), the mean and variance of L
i
when h=h0 . Note that, since

r
i
=y

i
−X

i
b=y

i
−X

i
b0+X

i
(b0−b), E0 (ri )=X

i
(b0−b),

we have

E0 (rir∞i )=S0+X
i
(b0−b)(b0−b)∞X∞

i
,

where S0=S(h0). Thus, using tr(AB)=tr(BA) and known results on expectation and variance of
quadratic forms of normal random variables, we obtain

E0 (L i )=−
1

2 A ∑n
t=1

z
tB∞ l− 1

2
trS−1S0−

1

2
(b0−b)∞X∞

i
S−1X

i
(b0−b),

V0 (L i )=
1

4
{tr(S−1S0 )2+2(b0−b)∞X∞

i
S−1S0S−1Xi

(b0−b)}.

We recall that S−1=T ∞D−1T , S0=T ∞−1
0

D0T −10 , where T , D, T0 and D0 have entries as in (2) with
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a= (l∞, c∞)∞ and a0= (l∞
0
, c∞
0
)∞ as their parameters and z

t
’s and z

tj
’s as their covariates. It follows from

the compactness of these parameter spaces and boundedness of their covariates along with that of
X
i
that V0 (L i )∏K, for all i.
The rest of the proof of (a) is essentially the same, though its details are much simpler than the

proof of Theorem 1 in Chiu et al. (1996, p. 207). The following identity is useful in verifying the
equicontinuity of the sequence {m−1Wm

i=1
E0 (L i )} in h as well as providing a glimpse of its limit

K0 (h ) as m�2:

−2

m
∑
m

i=1
E0 (L i )=A ∑n

t=1
z
tB∞ l+trS−1S0+trq1m ∑m

i=1
X
i
(b0−b)(b0−b)∞X∞

ir S−1.
The proof of (b) is essentially the same as that of Theorem 2 in Chiu et al. (1996).
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