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S

We provide unconstrained parameterisation for and model a covariance using covari-
ates. The Cholesky decomposition of the inverse of a covariance matrix is used to associate
a unique unit lower triangular and a unique diagonal matrix with each covariance matrix.
The entries of the lower triangular and the log of the diagonal matrix are unconstrained
and have meaning as regression coefficients and prediction variances when regressing a
measurement on its predecessors. An extended generalised linear model is introduced for
joint modelling of the vectors of predictors for the mean and covariance subsuming the
joint modelling strategy for mean and variance heterogeneity, Gabriel’s antedependence
models, Dempster’s covariance selection models and the class of graphical models. The
likelihood function and maximum likelihood estimators of the covariance and the mean
parameters are studied when the observations are normally distributed. Applications to
modelling nonstationary dependence structures and multivariate data are discussed and
illustrated using real data. A graphical method, similar to that based on the correlogram
in time series, is developed and used to identify parametric models for nonstationary
covariances.

Some key words: Antedependence; Cholesky decomposition; Generalised linear model; Linear regression and
autoregression; Link function; Multivariate normal; Nonstationary model; Stationary model.

1. I

Modelling a covariance matrix S is difficult because of (a) the possibly high dimensional-
ity of the problem and (b) the constraint that S must be positive definite.

Our goal is to introduce an unconstrained parameterisation for and to model a general
covariance matrix in terms of covariates, as is done for the mean vector in the generalised
linear models in McCullagh & Nelder (1989). Anderson’s (1973) class of linear covariance
models appears to be the natural starting point, but unfortunately here the linear
coefficients are constrained so that a covariance matrix is positive definite. Pinheiro &
Bates (1996) present five unconstrained parameterisations of a covariance matrix using
Cholesky decomposition, spectral decomposition and matrix logarithmic transformation
(Chiu, Leonard & Tsui, 1996; Leonard & Hsu, 1992). Their new parameters, however, do
not always have simple statistical interpretation. We use the modified Cholesky decompo-
sition of S−1, not S, to propose a statistically meaningful unconstrained parameterisation
of covariance and a link function, thereby removing difficulties (a) and (b). Since S−1 is
the canonical covariance parameter of a multivariate normal distribution, modelling its
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unconstrained parameters as a linear combination of covariates is in agreement with the
approach of generalised linear models and subsumes naturally the ideas of the antedepen-
dence model of Gabriel (1962), covariance selection of Dempster (1972) and the class of
graphical models in Cox & Wermuth (1996, Ch. 3), in which certain entries of S−1 or its
triangular factor are set to zero.

A key result used is that (Newton, 1988, p. 359) a symmetric matrix S is positive definite
if and only if there exists a unique unit lower triangular matrix T , with 1’s as diagonal
entries, and a unique diagonal matrix D with positive diagonal entries such that

T ST ∞=D. (1)

Fortunately, T and D are easy to compute and interpret statistically: the below-diagonal
entries of T are the negatives of the coefficients of YC

t
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j
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j
), the linear

least-squares predictor of Y
t

based on its predecessors Y
t−1 , . . . , Y1 , and the diagonal

entries of D are the prediction error variances s2
t
=var (Y

t
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t
), for 1∏t∏n. Since w

t,j
and log s2

t
are unconstrained, we may model them in terms of covariates. To this end, for

t=1, . . . , n and j=1, . . . , t−1, consider the models
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where m(. , .), v(. , . ), d(. , . ) are functions, x
t
, z

t
, z

t,j
are p×1, q1×1, q2×1 vectors of

covariates, and b= (b1 , . . . , b
p
)∞, l= (l1 , . . . , l

q
1

)∞ and c=(c1 , . . . , c
q
2

)∞ are parameters
corresponding to the mean, variance and dependence, respectively. We refer to (2) as the
joint mean-covariance model and note that it is composed of three submodels describing
the mean, variance and dependence of a random vector. It also subsumes naturally the
framework of joint modelling of mean and variance heterogeneity in Cook & Weisberg
(1983) and Verbyla (1993). In fact, when Y1 , . . . , Yn are independent, we have w

t,j
¬0 or

d¬0 and s2
t
=var (Y

t
). For excellent reviews and references on joint modelling of the mean

and variance heterogeneity see McCullagh & Nelder (1989, Ch. 10) and Chiu et al. (1996).
The outline of the paper is as follows. Section 2 introduces an unconstrained param-

eterisation and a generalised linear model for a covariance matrix along with examples
and a discussion of the class of antedependence models and limitations of (2) in modelling
structured covariances. Analysis of a real dataset illustrating details of our method for
fitting (2) to data is given in § 3. Section 4 provides three distinct representations, corre-
sponding to the three submodels in (2), of the likelihood function of a multivariate normal
random vector. For simplicity we assume throughout this paper that S is strictly positive
definite.

2. U 

2·1. Reparameterisation of S

The idea of regression is our key tool. For 1∏t∏n, let YC
t
stand for the linear least-

squares predictor of Y
t
based on its predecessors Y

t−1 , . . . , Y1 , and let e
t
be its predic-

tion error with variance s2
t
=var(e

t
). For simplicity set m=E(Y )=0. Thus, for t=1,

YC1=E(Y1 )=0, and for 1<t∏n consider the unique scalars w
t,j

minimising
E(Y

t
−Wt−1

j=1 c
j
Y
j
)2 with respect to the c

j
’s. Set w

t
=(w

t,1
, . . . , w

t,t−1)∞, for t=2, . . . , n. Then
from standard regression theory in Anderson (1984, pp. 125–38) we have
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where S
t
is the (t−1)×(t−1) leading principal minor of S and s

t
is the column vector

composed of the first t−1 entries of the tth column of S. By convention, we set all empty
sums to zero, that is W0

j=1 x
j
=0. The random variables

e
t
=Y

t
−YC

t
=Y

t
− ∑

t−1
j=1

w
t,j

Y
j

(t=1, . . . , n) (4)

being successive prediction errors are uncorrelated, so that, with e= (e1 , . . . , e
n
)∞, D=

cov(e) is a diagonal matrix, that is D=diag(s2
1
, . . . , s2

n
). Writing (4) in matrix form one

obtains

e=TY, (5)

where T is a unit lower triangular matrix with −w
t,j

in the (t, j )th position for 2∏t∏n
and j=1, 2, . . . , t−1. From (5) and the definition of D, it follows that

cov(e)=T cov(Y )T ∞=T ST ∞=D, (6)

so that the matrix T diagonalises the covariance matrix S. This diagonalisation is related
to the modified Cholesky decomposition of S and S−1 (Newton, 1988, p. 359).

Since the nonredundant entries of T and D have statistical meaning, the 1
2
n(n+1)

constrained and hard-to-model parameters of S can be traded in for the 1
2
n(n+1) uncon-

strained and interpretable parameters w
t,j

, log s2
t
, for 1∏t∏n and 1∏ j∏t−1. We refer

to the new parameters w
t,j

’s and s2
t
’s as the generalised autoregressive parameters and the

innovation variances of S or Y.

2·2. Generalised autoregressive parameters and regressograms

In this section we introduce a plot similar to the correlogram in time series to be used
in identifying models for generalised autoregressive parameters. For a fixed t�2, following
Tukey (1961) we refer to the plot of w

t,j
versus j=1, 2, . . . , t−1 as the tth theoretical

regressogram of S. It would be natural to call a plot of s2
t

versus t=1, 2, . . . , n the
theoretical variogram of S, but since this term is already in use in a different context in
Diggle (1988) we shall not use it here and refer to a statistical procedure employing all
these plots as a regressogram-based procedure.

Heuristically and from YC
t
in (3), since w

t,t−j is the lag-j regression coefficient one expects
it to be small for a fixed t and large j, and the sequence w

t,t−j , for j=1, 2, . . . , t−1, is
expected to be monotone decreasing. We use empirical regressograms for assessing graphi-
cally the nature of dependence of Y

t
on its predecessors and for suggesting parametric

models for w
t,j

and s2
t
. This is analogous to using the empirical correlogram, variogram

and lorelogram to arrive at parametric models for their theoretical counterparts, as in
Diggle (1988) and Heagerty & Zeger (1998).

The maximum likelihood estimators of these parameters and hence the regressograms
are obtained easily using (3) along with the invariance property of and the knowledge of
the maximum likelihood estimators of m and S for a multivariate normal distribution in
Anderson (1984, Ch. 3). More precisely, let y1 , . . . , ym be a sample from a population with
N(m, S ) distribution. Then
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where S= (s
i,j

), S
t
and s

t
are the sample analogues of S

t
and s

t
.
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Conditional on Y1 , . . . , Yt−1 being fixed, the distribution of w@
t
is N(w

t
, n−1s2

t
S−1
t

). Hence,
the significance of an individual w

t,j
(t�2) can be tested using the test statistic

w@
t,j

/(n−Ds@ 2t sjjt ), which has a Student-t distribution with n−t+1 degrees of freedom, where
sjj
t

is the jth diagonal entry of S−1
t

. More generally, the significance of the whole vector
w
t
can be tested using R2

t
, the multiple correlation coefficient between Y

t
and Y1 , . . . , Yt−1 ,

for t�3, and (Anderson, 1984, p. 140)

An−t+1

t−2 B A R2
t

1−R2
t
B~F

t−2,n−t+1 .

2·3. L inear mean-covariance models

In this section we discuss the flexibility and some properties of model (2) when m(., . ),
v( . , . ) and d(., . ) are linear functions of their parameters. We refer to such a model as a
linear mean-covariance model.

In general, q1 and q2 in (2) are different and the entries of l and c could be quite distinct,
but for simplicity and economy of notation occasionally we use the combined vector a=
(c∞, l∞)∞ of dimension q=q1+q2 to parameterise S. Similarly, a 1

2
n(n+1)×q design matrix

Z of covariates is constructed by appropriately concatenating z
t
’s and z

t,j
’s and padding

them with zeros if necessary. If we define w
t
as in (3), the transformation h( .), given by

h(S )= (w∞
2
, . . . , w∞

n
, log s2

1
, . . . , log s2

n
)∞=Za, (8)

is a link function (McCullagh & Nelder, 1989, p. 27) for a linear mean-covariance model.
To make this linear framework useful for longitudinal data analysis, following Diggle,
Liang & Zeger (1994, p. 16), we introduce the following notation for the data, parameters
and covariates:

Y= (Y ∞
1
, . . . , Y ∞

m
)∞, m=(m∞

1
, . . . , m∞

m
)∞, S=block diag (S1 , . . . , Sm),

X= (X∞
1
, . . . , X∞

m
)∞, m

i
=X

i
b, Z=block diag (Z1 , . . . , Zm

), h(S
i
)=Z

i
a,

(9)

where now the subscript i refers to the ith subject or cluster in the study. Then

Y~N(Xb, Za) (10)

is a suggestive shorthand for the distribution of sample data from a population with a
linear mean-covariance model. Now, (10) can be seen as an extended generalised linear
model for any longitudinal/multivariate data, with the help of a slight modification of
McCullagh & Nelder’s (1989, p. 27) three-part specification involving two link functions
(g, h), one for the mean and the other for covariance.

As a useful alternative to (8) we write h(S ) as a symmetric matrix H, where its main
diagonal is the logarithm of the diagonal entries of D, its first subdiagonal, i.e. the lag-
one regression coefficients, is the first subdiagonal of T and so forth. Since its entries are
merely rearrangements of those of Za, we have

H= ∑
q

j=1
a
j
U
j
, (11)

where the U
j
’s are symmetric covariate matrices. The idea of linear covariance structure,

i.e. using (11) to model functionals of a covariance, was initiated by Anderson (1973).
Our model (8) or (11) is close to that in Chiu et al. (1996), but avoids some statistical
and computational problems of their matrix-logarithmic covariance model where logS is
modelled as in (11).
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Model (8) is capable of producing nonstationary analogues of many special-structure
stationary covariances available in the literature of longitudinal data analysis. Its real
strength is in modelling nonstationary features where variances increase over time, and
measurements equidistant in time are not equicorrelated. For additional flexibility we may
rely on nonlinear functions as models for m

t
, log s2

t
and w

t,j
, in the same manner that

Heagerty & Zeger (1998) use nonlinear and nonparametric functions in modelling pairwise
log-odds ratios. Among special structures commonly used in longitudinal data analysis,
the two-parameter compound symmetry and  (1) models are the most popular. Others
include the three-parameter damped exponential family in MunAoz et al. (1992) and the
four-parameter family in Diggle (1988). Note that, for i=2, . . . , n and j=1, . . . , i−1, the
matrices T with w

i,j
given respectively by

c, ci−j, c(t
i
−t
i−j

)h, cf(t
i
,l
j
)−f(t

i−j
,l
j
)

j
, c

i−j (12)

are analogous to compound symmetry,  (1), damped exponential, structured antedepen-
dence (Zimmerman & NúnAez-Antón, 1997) and banded. However, unlike the stationary
case, the c, h and l are unconstrained and f ( . , . ) in (12) is a known function.

By (1), the positive definiteness of the estimated covariance matrix is guaranteed. In
contrast, in Anderson’s (1973) linear covariance model complicated constraints on the
coefficients are needed to ensure positive definiteness, and, in the approach of Liang &
Zeger (1986), the positive definiteness of the estimated covariance matrix is not guaranteed;
see also Crowder (1995) and Pinheiro & Bates (1996).

2·4. Examples

Example 1. (a) (Pinheiro & Bates, 1996). For this S, its 6×1 vector of covariance
predictors h(S ) is computed using

S=A1 1 1

1 5 5

1 5 14B=A1 0 0

1 2 0

1 2 3B A1 1 1

0 2 2

0 0 3B=L DL ∞,

T=L−1=A 1 0 0

−1 1 0

0 −1 1B , D=diag (1, 4, 9), h(S )= (1, 0, 1, 0, log 4, log 9)∞.

From (4), it follows that Y1=e1 , Y
t
=Y

t−1+e
t
, for t=2, 3.

(b) Given h(S )= (3, −1·5, −1, 0, −1, 2)∞ for an unknown 3×3 matrix S, the matrix
is recovered by first constructing T and D:

T=A 1 0 0

−3 1 0

1·5 1 1B , D=diag (1, e−1, e2).

Then from (1) one computes S.

Example 2. (a) For n=2 and q=1 and an arbitrary covariance covariate Z=(z1 , z2 , z3 )∞,
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the generalised linear model (8) amounts to the following reparameterisation of S:

S=ez
2
aA 1 z1a

z1a z2
1
a2+e(z

1
−z
2
)aB ,

containing only one unconstrained parameter a. The parameterised correlation coefficient
between Y1 and Y2 is given by z1a[z2

1
a2+exp{(z3−z2 )a}]−D, which approaches ±1 when

z3−z2 approaches −2. In a longitudinal study with two measurements made on a subject
at times t1<t2 , the choice of z1=t1 , z2=−(t2−t1) and z3=−(t2−t1)2 leads to a covari-
ance matrix with many desirable decay properties when t1 and t2 grow far apart.

(b) For n=2 and q=2, a=(a1 , a2)∞ and

Z=A1 1 1

z1 z2 z3
B∞,

the linear model for the unconstrained entries of h(S )=Za can be solved using (8) to
express entries of S in terms of the new covariance parameters a1 , a2 and the explanatory
variables in Z as follows:

s11=ea
1
+z
2
a
2
, s21= (a1+z1a2 )ea1+z2a2, s22=ea

1
+z
3
a
2
+(a1+z1a2)2ea1+z2a2.

(c) The alternative representation (11) of h(S ) above is

H=Alog s2
1

w12
w12 log s2

2
B=a1J+a2 Az2 z1

z1 z3
B=a1U1+a2U2 ,

where U1=J is the 2×2 matrix of 1’s and the choice for U2 is obvious.
Next, we highlight recognisable features of regressograms for (1) and compound

symmetry.

Example 3. The covariance matrix of an (1) model is given by S=s2 (r|i−j|)n
i,j=1 , for

|r |<1 and s2>0. It follows from (3) that, for t�2, w
t
= (0, . . . , 0, r)∞, s2

t
=s2, and

s2
1
=s2 (1−r2 )−1, so that, assuming that m=0, Y1 , . . . , Yn satisfy Y1=e1 and Y

t
=

rY
t−1+e

t
, for 2∏t∏n.

Here, only the lag-one generalised autoregressive parameters are nonzero and s2
1

is a
nonlinear function of r. Thus, the theoretical regressograms for  (1) and more generally
for ( p) models are simpler to recognise; they drop off to zero for lags j>p and s2

t
is

constant for t>p.

Example 4. The covariance matrix of a compound symmetry model is given by

S=s2{(1−r)I+rJ} (−(n−1)−1<r<1, s2>0).

It follows from (3) that w1=0, s2
1
=s2 and, for t�2,

w
t
=r{1+ (t−1)r}−11

t−1 , s2
t
=s2 q1− (t−1)r2

1+ (t−1)rr ,

where 1
t−1 is a (t−1)-dimensional vector of 1’s. If we assume that m=0, it follows that

Y1 , . . . , Yn satisfy

Y
t
=r{1+(t−2)r}−1 ∑

t−1
j=1

Y
j
+e

t
(t=1, . . . , n),

where, unlike with the  (1), all generalised autoregressive parameters are nonzero and
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for a given t all predecessors of Y
t
receive identical coefficients. Also, all generalised autoreg-

ressive parameters and innovation variances are nonlinear functions of r and the time.
Figure 1 provides plots of these parameters versus time for a compound symmetry with
r=0·5 and s2=1. Figure 1(a) shows a distinct compound symmetry feature where, for
each t, the tth regressogram is flat. Of course, such theoretical features of regressograms
for special covariance structures are crucial at the model identification stage.
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Fig. 1. Regressograms of a compound symmetry with correlation
coefficient, r, equal to 0·5 and variance, s2=1. (a) Generalised autoregress-

ive parameters and (b) log-innovation variances.

2·5. Antedependence models

In this section, as another and important example of (4) and (8), we consider the class
of antedependence models of order p, denoted by ( p) for short. The order p serves as
a memory gauge, where p=0 corresponds to independence and p=n−1 to arbitrary
multivariate dependence. The random variables Y1 , . . . , Yn , indexed by time, are said to
be ( p) if the conditional distribution of Y

t
given Y

t−1 , . . . , Y1 depends on Y
t−1 , . . . , Yt−p ,

for all t�p (Gabriel, 1962). This concept is equivalent to Y1 , . . . , Yn having a Markovian
dependence of order p (Diggle et al., 1994, p. 85).

Next, we show that  ( p) dependence of measurements is equivalent to certain general-
ised autoregressive parameters being zero. From (4), it follows that a normal random
vector Y =(Y1 , . . . , Yn )∞ with mean m= (m1 , . . . , m

n
)∞ is  ( p) if and only if

Y
t
=m

t
+ ∑

p*
t

j=1
w
t,t−j (Yt−j−m

t−j )+e
t

( t=1, . . . , n), (13)

where p*
t
=min( p, t−1). However, (13) is equivalent to the last n−p−1 subdiagonals

of T or H or U1 , . . . , Uq
being identically equal to zero. We use this simple observation

to give an alternative proof of a result of Gabriel (1962, Theorem 1) characterising  ( p)
in terms of certain entries of S−1 being zero; see Theorem 1(c) below.

T 1. L et Y~N(m, S ) with S factored as in (1), and let p be a fixed integer
between 0 and n−1. T hen the following are equivalent:

(a) Y1 , . . . , Yn are  ( p),
(b) the last n−p−1 subdiagonals of T are zero,
(c) the last n−p−1 subdiagonals of S−1 are zero,
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(d) the last n−p−1 subdiagonals of U1 , . . . , Uq
in (11) are zero.

The variable-order antedependence models in Macchiavelli & Arnold (1994) generalise
Gabriel’s constant-order antedependence models by allowing the order p to depend on
times of measurements. This amounts to setting to zero certain entries of T , instead of
S−1, in a manner that is more liberal than Gabriel’s, and yet less general than Dempster’s
(1972) method.

Although the ( p) is more parsimonious than an arbitrary covariance, still it has too
many parameters to be useful in practice. Zimmerman & NúnAez-Antón (1997) seem to
have been the first to reduce the number of parameters using covariates in the spirit of
(2). Denoting the measurement times for an arbitrary subject by t1<t2< . . .<t

n
, they

consider the following  ( p) model with time-dependent coefficients:

w
ij
=wf(t

i
,l
j
)−f(t

i−j
,l
j
)

j
(i=p+1, . . . , n; j=1, . . . , p),

s2
t
=s2g(t, h) (i=p+1, . . . , n),

(14)

where w1 , . . . , w
p

are positive, and f ( . , . ) and g(. , . ) are known functions with parameters
l1 , . . . , l

p
and h.

2·6. Structured covariances

In this section we discuss limitations of (2) in modelling stationary and other structured
covariances. Evidently, any structure imposed on S will lead to constraints on T and D
so that (2) is not directly applicable. In some mildly structured cases, however, we are
able to handle the constraints on T and D by choosing the covariates in Z appropriately,
as in the  ( p) model of § 2·5, where certain elements of Z are set to zero. On the other
hand, the stationary structure is not easily amenable to (8), because T does not have
recognisable unconstrained entries, as in Theorem 1(b), say, but Examples 3 and 4 suggest
that in this case one must forfeit the linearity of w

t,j
in (8). Also, the entries of the matrix

D are order-restricted, i.e.

s2
1
=s11�s2

2
� . . .�s2

n
, (15)

because of the constancy of the diagonal entries of a stationary covariance.
Since an n×n correlation matrix has 1’s as diagonal entries, effectively it has 1

2
n(n−1)

distinct parameters and is structured. Hence, certain entries of T and D are either redun-
dant or known. For example, the diagonal entries of the matrix D are monotone decreasing
as in (15) with s2

1
=s11=1, and n−1 of the below-diagonal entries of T are redundant.

To accommodate these constraints, one may choose z1 in (8) to be zero and, after estimat-
ing b, l, a and the s2

t
’s, we may rearrange the remaining z2 , . . . , zn so that (15) is satisfied.

The redundancy of the below-diagonal entries of T can be resolved, for example by either
judiciously setting to zero n−1 of its entries or following the idea of variable-order
antedependence models in Macchiavelli & Arnold (1994).

3. P     

This section relies on regressograms to identify models like (2) for a real dataset. Since
modelling strategies for the mean and variance heterogeniety are well developed in Verbyla
(1993) we focus mainly on modelling the dependence components w

t,j
. The models and

their parameter estimates are only preliminary and should not be regarded as final.
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Table 1: Cattle data. Sample variances (along the main diagonal), correlations (above the
main diagonal), generalised autoregressive parameters (below the main diagonal) and inno-

vation variances (last row) for the group A cattle

t 1 2 3 4 5 6 7 8 9 10 11

1 106 0·82 0·76 0·66 0·64 0·59 0·52 0·53 0·52 0·48 0·48
2 1·00 155 0·91 0·84 0·80 0·74 0·63 0·67 0·60 0·58 0·55

3 0·05 0·90 165 0·93 0·88 0·85 0·75 0·77 0·71 0·70 0·68
4 −0·23 0·16 0·98 185 0·94 0·91 0·82 0·84 0·77 0·73 0·71
5 0·04 0·00 0·00 1·06 243 0·94 0·87 0·89 0·84 0·80 0·77

6 −0·02 −0·21 0·16 0·26 0·83 284 0·93 0·94 0·90 0·86 0·83
7 0·20 −0·34 −0·04 −0·03 0·15 1·00 306 0·97 0·93 0·88 0·86
8 −0·06 0·01 0·06 −0·26 0·22 0·61 0·41 341 0·97 0·94 0·92

9 0·21 −0·14 0·01 −0·22 −0·03 −0·03 0·33 0·93 389 0·96 0·96
10 −0·24 0·10 0·39 −0·26 −0·11 −0·04 −0·17 0·31 1·01 470 0·98
11 0·13 −0·23 0·09 0·23 0·01 −0·31 −0·05 −0·05 0·33 0·86 445

106 50 29 25 27 28 37 29 16 28 9

Kenward (1987) reports an experiment in which cattle were assigned randomly to two
treatment groups A and B, and their weights were recorded to study the effect of treatments
on intestinal parasites. Thirty animals received treatment A and another 30 received treat-
ment B. They were weighed n=11 times over a 133-day period; the first 10 measurements
on each animal were made at two-week intervals and the final measurement was made
one week later. The measurement times were common across animals and were rescaled
to t=1, 2, . . . , 10, 10·5. No observation was missing so this is a balanced longitudinal
dataset.

For the treatment group A with m=30 animals, we assume a common mean vector m
and an 11×11 covariance matrix S. A profile plot of the data reveals that the weights
have an upward trend and their variances tend to increase over time, which suggests
nonstationary covariance structure. This is confirmed by the upper diagonal entries in
Table 1, which are the sample correlations. Furthermore, correlations within the sub-
diagonals are not constant and increase over time, giving a second indication that a
stationary covariance is not appropriate for the data. Table 1 gives the sample correlations,
generalised autoregressive parameters and the innovation variances, and the latter two
are plotted in Fig. 2(a), (c). These plots reveal that both the sample generalised autoregress-
ive parameters and the logarithms of the innovation variances are cubic functions of the
lag. That is, for t=1, 2, . . . , 10, 11

log s@2
t
=l1+l2t+l3t2+l4t3+e

t,v
,

w@
t,j
=c1+c2( t− j )+c3 (t− j )2+c4(t− j )3+e

t,j,d
( j=1, 2, . . . , t−1).

(16)

The variance parameters l= (l1 , l2 , l3 , l4 )∞ and dependence parameters c=(c1 , c2 , c3 , c4)∞
can be estimated using the maximum likelihood method developed in § 4·1, but for demon-
stration and simplicity we use the least squares method here; the estimates are given in
Table 2.

The differences in the magnitudes of sample s2
t
’s and w

t,j
’s both in this case and in

general are the main reason for separate parameterisation of innovation variances and
generalised autoregressive parameters in (16) and (2). The fitted variances, correlations,
innovation variances and generalised autoregressive parameters using (16) are given in
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Fig. 2. Sample and fitted regressograms for the cattle data. (a) Sample general-
ised autoregressive parameters, (b) fitted generalised autoregressive parameters,
(c) sample log-innovation variances and (d) fitted log-innovation variances. The

fitted values in (b) and (d) are from the fitted cubic polynomials in (16).

Table 2: Cattle data. L east squares estimates
of the parameters of the two cubic polynomials

in (16)

Parameters j=1 j=2 j=3 j=4

l
j

3·37 −1·47 0·24 −0·93
c
j

0·18 −1·71 1·64 −1·11

Table 3. Comparison with their sample values in Table 1 shows a surprisingly good agree-
ment and reveals the potential power of regressograms in suggesting parsimonious models
for S. Note that, with n=11, the unstructured covariance has 66 parameters, but Kenward
(1987) and Macchiavelli & Arnold (1994) used 30 and 26 parameters, respectively, in their
constant and variable-order antedependence models. Zimmerman & NúnAez-Antón (1997),
using antedependence models with time as covariate, see (14), were able to reduce the
number of required parameters to as low as 6. Our preliminary linear model (16) with
only 8 parameters achieved results comparable to those of Zimmerman & NúnAez-Antón
(1997), in the sense that the entries of the fitted covariance matrices are ‘close’ to each
other. To compare the fits more rigorously, it is standard to rely on penalised likelihood
criteria such  and . In our context of covariance model selection the  is defined
as

=−
2

m
L +p

log m

m
, (17)

where m is the sample size, L is the maximised loglikelihood for a covariance model and
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Table 3: Cattle data. Fitted innovation variances (along the main diagonal), correlations
(above the main diagonal), and generalised autoregressive parameters (below the main

diagonal) for the group A cattle.

t 1 2 3 4 5 6 7 8 9 10 11

1 99 0·75 0·76 0·74 0·69 0·63 0·57 0·52 0·50 0·50 0·44
2 0·87 59 0·89 0·89 0·86 0·80 0·74 0·67 0·63 0·62 0·59

3 0·30 0·87 35 0·95 0·93 0·89 0·82 0·76 0·71 0·68 0·65
4 −0·01 0·30 0·87 24 0·96 0·93 0·87 0·81 0·76 0·73 0·69
5 −0·13 −0·01 0·30 0·87 22 0·96 0·92 0·86 0·80 0·77 0·73

6 −0·12 −0·13 −0·01 0·30 0·87 25 0·95 0·91 0·86 0·82 0·78
7 −0·04 −0·12 −0·13 −0·01 0·30 0·87 30 0·95 0·91 0·88 0·85
8 0·06 −0·04 −0·12 −0·13 −0·01 0·30 0·87 33 0·95 0·94 0·91

9 0·11 0·06 −0·04 −0·12 −0·13 −0·01 0·30 0·87 31 0·97 0·96
10 0·05 0·11 0·06 −0·04 −0·12 −0·13 −0·01 0·30 0·87 19 0·99
11 −0·17 0·05 0·11 0·06 −0·04 −0·12 −0·13 −0·01 0·30 0·87 9

p is the number of covariance parameters. A smaller value of  is associated with a
better fitting model. The values of L and  for the covariance induced by model (16)
are −1051·81 and 71·03, respectively. These compare quite favourably with the corre-
sponding values −1054·20 and 70·96 of the (2) covariance model chosen by
Zimmerman & NúnAez-Antón (1997).

Note that the fitted generalised autoregressive parameters in Table 3 are constant along
the subdiagonals; equivalently the fitted T is a band matrix. This is an artifact of model
(16) and the chosen covariates whereby, for instance, the fitted value for w@

t,1
is

c@1+c@2+c@3+c@4 and does not depend on t. Only the first two subdiagonals have sizeable
fitted values, 0·87 and 0·30, relative to others, similar to the sample-based pattern present
in Table 1.

Next, the sample generalised autoregressive parameters are tested for significance using
the F-tests described at the end of § 2·2. The observed values of the test statistic for testing
H05w

t
=0 for t=3, . . . , 11 are 41·81, 25·49, 18·33, 13·59, 7·19, 7·16, 10·08, 4·00 and 5·14,

and the corresponding critical values for significance level 0·05 are 5·12, 4·46, 4·35, 4·53,
5·05, 6·16, 8·89, 19·37 and 240·50, respectively. These tests indicate that, for t=3, . . . , 9,
at least some entries of w

t
are significantly different from zero.

4. T     

4·1. T he likelihood function

The factorisation (1) facilitates considerably the computation of the multivariate normal
likelihood function, which has three distinct representations corresponding to the
three sets of parameters or submodels in (2) when the observations Y

i
~N(m, S ), for

i=1, 2, . . . , m, are independent. Moreover, we shall see that for the generalised linear
model (8) the loglikelihood is a quadratic function of the dependence parameters c.

Thanks to (1), expressions involving the determinant and the inverse of S can be handled
easily. Also, since the action of the matrix T in (5) is to map any vector to its vector
of prediction errors, if we define r

i
=y

i
−m

i
=(r

i,t
)n
t=1 , we obtain T r

i
=r

i
−r@

i
, for

i=1, 2, . . . , m, where r@
i,t

as in (3) is the best linear predictor of r
i,t

based on its predecessors
r
i,j

, for 1∏ j∏t−1. In the following, we also need r(t)=(r
i,t

)m
i=1 , which is the vector of

centred observations made on the tth occasion on all m subjects.
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By (1), the quadratic form Q in the exponent of the likelihood function can be written

Q= ∑
m

i=1
(y
i
−m

i
)∞S−1(y

i
−m

i
)= ∑

m

i=1
r∞
i
T ∞D−1T r

i

= ∑
m

i=1
(r
i
−r@

i
)∞D−1 (r

i
−r@

i
)= ∑

m

i=1
∑
n

t=1
(r
i,t
−r@

i,t
)2

s2
t

= ∑
n

t=1


t
s2
t

,

where


t
= ∑

m

i=1
(r
i,t
−r@

i,t
)2 (18)

is the residual sum of squares from the analysis of covariance of r(t) with r(t−1), . . . , r(1)
as covariates (Kenward, 1987). From (18) and if we assume a linear mean-covariance
model, it is evident that 

t
and hence Q are quadratic functions of the correlation

parameters c:


t
= ∑

m

i=1 Ari,t− ∑
t−1
j=1

w
t,j

r
i,jB2= ∑

m

i=1 qri,t−A ∑
t−1
j=1

z∞
t,j

r
i,jB cr2= ∑

m

i=1
{r
i,t
−z∞(i, t)c}2,

Q= ∑
m

i=1
∑
n

t=1
s−2
t

{r
i,t
−z∞(i, t)c}2= ∑

m

i=1
{r
i
−Z(i)c}∞D−1{r

i
−Z(i)c},

(19)

where

z(i, t)= ∑
t−1
j=1

z
t,j

r
i,j

, Z(i)= (z(i, 1), . . . , z(i, n))∞, (20)

are respectively q2×1 and n×q2 matrices.
The loglikelihood L (b, l, c; Y ), up to the additive constant mn log 2p, satisfies

−2L (b, l, c; Y )=m log |S |+ ∑
m

i=1
(y
i
−X

i
b)∞S−1(y

i
−X

i
b)

=m ∑
n

t=1
log s2

t
+ ∑

n

t=1


t
s2
t

=m ∑
n

t=1
log s2

t
+ ∑

m

i=1
{r
i
−Z(i)c}∞D−1{r

i
−Z(i)c}. (21)

If we use the above representations of the loglikelihood in (21) the score vector and the
Fisher expected information can be computed, and a three-stage estimation procedure
can be developed by viewing (21) as involving three sub-models for the mean, variance
and correlation (Smyth, 1989; Verbyla, 1993). For given (l, c) or S, the first equation in
(21) defines the mean model with y

i
as its response; for given b and c, the second identity

is viewed as the variance model with 
t
as response; and, for given b and l, the third

identity can be viewed as the correlation model with r
i
as response.

For unbalanced data, the nature of the computations involved in maximising the likeli-
hood function is similar to those in (21). Let us define

Q(a)= ∑
m

i=1
{Y
i
−X

i
b@ (a)}∞S−1

i
{Y
i
−X

i
b@ (a)}= ∑

m

i=1
Q
i
(a),

where S
i
=S

i
(t
i
; a) is the n

i
×n

i
covariance matrix of Y

i
, X

i
is the n

i
×p matrix of covariates
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for the ith subject, and, for a given a, b@=b@ (a) stands for the generalised least squares
estimator of b. Then the likelihood function of the unbalanced data satisfies

−2L (b@ , a)= ∑
m

i=1
{log |S

i
|+Q

i
(a)}.

For each a, evaluation of L (b@ , a) involves at most m determinants and inverses of S
i
. Since

q, the dimension of a, is usually small, one can use either the Nelder–Mead simplex
algorithm or a quasi-Newton algorithm (Diggle, 1988), neither of which requires partial
derivatives of L (b@ , a). However, these algorithms do not provide the ingredients necessary
to compute standard errors of a@ . When this is needed, one may use the Newton–Raphson
algorithm using the first two partial derivatives of L (b@ , a). The details of the exact Fisher
scoring and Newton–Raphson methods are rather lengthy and are hence deferred to a
follow-up paper.

4·2. Model fitting

In fitting model (8) to data a slight modification of Diggle’s (1988) three-stage approach
can be adopted. Since 

t
in (18) is the residual sum of squares from the analysis of

covariance of r(t) with r(t−1), . . . , r(1) as covariates, using (21) one could use the tech-
nique of Kenward (1987) to express the likelihood-ratio tests in terms of individual compo-
nents from analyses of covariance even though Y is not assumed to be antedependent.

To implement our procedure, we must identify potential covariance covariates. The
experience of the last two decades indicates that the matrix Z

i
in (9) usually consists of

subject-specific covariates, with times t
ij

and time-separations z
i,jk

=|t
ij
−t

ik
| often playing

the most prominent roles. They fall into two distinct categories depending on whether
there is a desire to fit stationary or nonstationary models. The stationary description is
more common in longitudinal data analysis (Diggle, 1988) even when the data do not
necessarily support it. For nonstationary dependence t

ij
is used often as covariate: this is

evident in (16); in the mixed model approach of Laird & Ware (1982), where the covariance
is expressed in terms of the subject-specific covariates including t

ij
; and in the structured

antedependence models of Zimmerman & NúnAez-Antón (1997), where w
i,j

is modelled as
in (12). In addition, any existing special structure covariance such as the compound
symmetry, (1), can serve as the building blocks and serve as covariate matrix in (11).
The set-up of (11) and (10) allows us to combine, compare and test for a particular
covariance structure when faced with several alternative special structure covariances
S1 , . . . , Sq (Chiu et al., 1996). This is particularly attractive since, because of (2) or (10),
we are able to fit nested covariance models (Diggle et al., 1994, Ch. 5).

5. F 

Much more work is needed to bring this methodology to the current level of generalised
linear model theory for mean modelling. Our follow-up paper is concerned with the
problems of maximum likelihood estimation of b and a in (8) using Fisher scoring and
iterative Newton–Raphson methods. For nonnormal data, b and a would be estimated
using the idea of generalised estimating equations in Liang & Zeger (1986) and applying
(1)–(2) to the working correlation matrices. Since the mean-covariance model (2) extends
the mean-variance model in Verbyla (1993), his procedures on maximum likelihood and
restricted maximum likelihood and diagnostics would be extended to our more general
set-up.
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