
Estimating Markov Switching model using Gibbs sampling
with a statistical computing software R ∗

Atsushi Matsumoto †

2008.6.10

Abstract

The objective of this paper is to provide readers with the program to estimate a Markov
switching model with time varying transition probability(Filardo, 1994) by using a statis-
tical computing software R. Although many of the previous studies estimating the model
have conducted the estimation by the maximum likelihood estimation, this paper utilizes
Gibbs sampling method. Using Gibbs sampling method enables us to estimate more com-
plicated models which are impossible or difficult to be estimated by the maximum likelihood
estimation.

1 Introduction

In many parts of time series analysis, a Markov switching model(Hamilton, 1989) and a Markov
switching model with time varying transition probability(Filardo, 1994) have been used to
capture structural changes which cannnot be observed. But these models are highly nonlinear
and are difficult to be estimated, or is impossible to be done in some cases by using the maximum
likelihood estimation. In such cases, other method should be applied. Following Filardo and
Gordon(1998), this paper uses Gibbs sampling method to estimate the model. Using this
method enables us to estimate the highly nonlinear model.

This paper is not the first attempt to estimate a Markov switching model by Gibbs sampling.
But, according to the author’s knowledge, there has been no attempt to do it with a statistical
computing software R. The advantage of using R is that we can use it by free of charge,
while GAUSS or Matlab is expensive. Therefore, providing the program in R language is a
contribution of this paper.

This paper proceeds as follows. The next section reviews the model. Section 3 explains
the program used for estimating the model. Section 4 argues the advantages of using Gibbs
sampling method.

2 Model

The model of interest is a Markov switching model with time varying transition probability(MS-
TVTP model) with a mean-deviation, pth order-autoregressive form:

yt −m(st) = φ1

(
yt−1 −m(st−1)

)
+ · · ·+ φp

(
yt−p −m(st−p)

)
+ et, et ∼ i.i.d. N (0, σ2), (1)

where m(st), for instance, indicates that the parameter is dependent on the state at t, st =
0, 1, which cannnot be observed but is assumed to follow a discrete Markov chain such that
Pr(st|st−1, st−2, · · ·) = Pr(st|st−1). And the value of st is determined by a latent variable s∗t as
the following rule:

st = 1 if s∗t = z′t−1γ
(st−1) + ut ≥ 0,

st = 0 if s∗t = z′t−1γ
(st−1) + ut ≤ 0,

(2)

∗The estimation is conducted by using a statistical computing software R, version 2.4.0. Although all the
programs are confirmed to be worked precisely, all the remaining errors are mine. In writing this note, I refered
the GAUSS program written by Professor Martin Ellison, University of Warwick. I am thankful to him for his
program distributed at http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/ellison/software/.

†E-mail: atsushi-mail@hcc6.bai.ne.jp

1

where the value of st−1 is given, zt−1 is a vector of exogenous varibales avairable at t− 1, and
ut is assumed to follow the standard normal distribution, i.e., E(ut) = 0 and Var(ut) = 1. Since
ut follows such a distribution, the transition probabilities from st−1 to st for all the possible
values of states are given by:

st = 1 and st−1 = 1 with Φ(z′t−1γ
(1)),

st = 1 and st−1 = 0 with Φ(z′t−1γ
(0)),

(3)

where Φ() is the cumulative distribution function for the standard normal distribution. Note
that st = 0 and st−1 = 1 with the probability 1 − Φ(z′t−1γ

(1)), and that st = 0 and st−1 = 0
with the probability 1− Φ(z′t−1γ

(0)).
Letting m(st) := m0 + m1st and φ := (φ1 · · ·φp)′, the parameters to be estimated are

θ :=
{
m0, m1, φ, σ2, γ(0), γ(1), {st}n

t=p+1, {s∗t }n
t=p+1

}
, (4)

where all the st and s∗t are included here because they are unobseved and n is the number of
observation. In Gibbs sampling estimation, unobserved variables(st and s∗t) are regarded as
paramteres and can be obtained. For computation, we denote the information set avairable
at t by Ωt. Note that Ωt includes y1, · · · , yt and z1, · · · ,zt. The parameter set is divided as
θ = (θ1 · · ·θ5) where

θ1 := {φ, σ2},
θ2 := {m0, m1},
θ3 := {st}n

t=p+1,

θ4 := {s∗t }n
t=p+1,

θ5 := {γ}.

(5)

In the next section, the procedures and programs to obtain these parameters are explained. As
an example, this paper utilizes the data for business cycle and the monetary policy in Japan,
i.e., the composite coincident index of business condition index(CCI) and the uncollateralized
overnight call rate(CALL). In this example, yt is the growth rate of CCI(yt = 100 ·∆ln CCIt)
and zt is assumed to include CALLt(zt = (1 st CALLt CALLtst)′). Then the structure of the
determination of the state is rewritten as:

s∗t = γ0 + γ1st−1 + γ2CALLt−1 + γ3CALLt−1st−1 + ut, st−1 = i is given. (6)

Including st−1 and the cross term CALLt−1st−1 is for considering the effect of the monetary
policy variable, separating the state. Therefore γ becomes γ = (γ0 γ1 γ2 γ3)′.

3 Estimation Procedure
This section overviews the procedure and the program to estimate an MS-TVTP model by using
Gibbs sampler. Gibbs sampler is a class of Markov Chain Monte Carlo(MCMC) which enables
us to estimate the model even in the case where the ordinal maximum likelihood estimation
cannot be applied. The discussion in this section is entirely based on Albert and Chib(1993),
and Filardo and Gordon(1998). See them for the detail. Then we here use Hungarian notation
in which the name of a variable indicates its type or intended use: words beginning with v
represent vectors, words beginning with m represent matrices and other words are basically
scalar in this note.

The program begins with loading the data for CCI and CALL to construct the corresponding
data vectors vY and vMpol, respectively, and the prior vector for the values of all the s(vS). The
prior for st is the recession data announced by Economic and Social Research Institute(ESRI)
in Japan. If ESRI announces that Japanese economy is in recession at t, st = 0. The data of vY
and vS can be obtained from ESRI website, and that of vMpol can be obtained from the Bank
of Japan website.

data <-read.table("h:\\ci.txt",header=F)
data <-data.frame(data)
vY <-data[,2]
vS <-data[,3]
vY <- (log(vY[139:211])-log(vY[138:210]))*100

2

vS <- vS[139:211]

data2 <-read.table("h:\\callrate.txt",header=F)
data2 <-data.frame(data2)
vMpol <-data2[,2]
vMpol <- (vMpol[73:145])*0.1

In the above, vMpol is multiplied by 0.1 in order to conduct an estimation smoothly. Then we
set other conditions:
lag <-2
iteration <-15000
burnin <-5000
when <-500
t <-length(vY)

Now lag is set to 2 because we here consider AR(2) model. And iteration is the number
of drawing samples, burnin is the number of burn-in, which is the number of samples to be
discarded for eliminating the influence of initial values, and when is how often the estimation
result is printed. t is the number of observations. Next we here define the matrices for saving:

mPhi <-matrix(0,nrow=lag,ncol=(iteration-burnin))
mM <-matrix(0,nrow=2,ncol=(iteration-burnin))
mG <-matrix(0,nrow=4,ncol=(iteration-burnin))
mRec <-matrix(0,nrow=t,ncol=(iteration-burnin))

The above commands mean that mPhi is a matrix for saving φ, mM for m, mG for γ and mRec
for {Pr(st = 0|Ωt)}n

t=1. Note that the above matrices(with zeros) have the row equal to the
parameters number and the column equal to the number of saved obervations.

3.1 Obtain θ1

In Gibss sampling, we need to consider the prior and the posterior distribution for parameters.
Now, as to φ and σ2, we assume that φ follows the multivariate normal distribution and σ2

follows the inverse gamma distribution, which indicates that the inverse of σ2 follows the gamma
distribution. Therefore we set the prior as:

φ ∼ N (φ0, σ
2P0), given σ2,

σ2 ∼ G−1
(v0

2
,
v0σ

2
0

2

)
,

(7)

where E(σ−2) = σ−2
0 and Var(σ−2) = 2/v0σ

4. The values with subscript 0(say, φ0) are the
prior values which we need to set before Gibbs sampling. In the program, we write:

vPhi0 <-rbind(-0.26,0.001)
mP0 <-rbind(cbind(100,0),

cbind(0,100))

Here vPhi0 and mP0 correspond to φ0 and P0, respectively. Now the prior values for vPhi0 and
mP0 are not limited to the above. Then letting ỹt := yt−m0−m1st given the values of m0, m1
and st, Eq.(1) can be rewritten as a linear model without latent variables:

ỹt = φ1ỹt−1 + · · ·+ φpỹt−p + et. (8)

Collecting all the LHS variables into ỹ, the RHS variables into X̃ and the error terms into e
for all t, the above model becomes ỹ = X̃φ + e. Then the posterior distribution of φ and σ2

has the normal-gamma form:

φ ∼ N (φ1, σ
2P1), given σ2,

σ2 ∼ G−1
(v1

2
,
v1σ

2
1

2

)
,

(9)

where

P1 = (P−1
0 + X̃ ′X̃)−1,

φ1 = P1(P−1
0 φ0 + X̃ỹ),

v1 = v0 + (n− p),

σ2
1 = v−1

1

(
v0σ

2
0 + (ỹ − X̃φ0)(ỹ − X̃φ0)′ + (φ1 − φ0)′P0(φ1 − φ0)

)
.

(10)

3

In the program, the above generation rule can be written as below. Firstly, vYt is defined,
which is the vector with typical element ỹt := yt −m0 −m1st given the prior for m and st for
all t. mXt is firstly defined as the vector such as mXt= (ỹp · · · ỹt−1)′, which is the lagth column
of X̃.

vYt <- vY-cbind(matrix(1,nrow=t,ncol=1),vS)%*%vM0
mXt <-vYt[lag:(t-1)]

We then attempt to construct X̃ as follows. The vector mXt is transformed into X̃, using while
function ,and cbind function which is an R function to attach column vectors. Consequently,
mXt has the typical row (ỹt−1 · · · ỹp) and the vector vYt is newly defined as vYt = (ỹp+1 · · · ỹn)′.
The vYt and mXt created as above yield the model ỹ = X̃φ + e.

i <-2
while(i <= lag){

mXt <-cbind(mXt,vYt[(lag+1-i):(t-i)])
i <-i+1

}
vYt <-vYt[(lag+1):t]

In the below, vPhi1 and mP1 correspond to φ1 and P1, respectively. And vE is the residual
vector with typical element et, v1 is v1, where v0 is set to be zero here, and sig1 corresponds
to σ2

1 .

vPhi1 <- solve(solve(mP0)+t(mXt)%*%mXt)%*%(solve(mP0)%*%vPhi0+t(mXt)%*%vYt)
mP1 <-solve(solve(mP0)+t(mXt)%*%mXt)
vE <-vYt-mXt%*%vPhi0
v1 <-(t-lag)
sig1 <-(v1)^(-1)*(t(vE)%*%(vE)+t(vPhi1-vPhi0)%*%mP0%*%(vPhi1-vPhi0))

sigg <-(rgamma(1,shape=v1/2,scale=(v1*sig1/2)^(-1))^(-1))
vPhig <-vPhi1+sqrt(sigg)*t(chol(mP1))%*%rnorm(lag)

Since the posterior mean and variance of φ and the posterior degree of freedom for σ2 have
been defined in the above, we can generate φ and σ2 from their posterior distribution. The
generated φ from the posterior is vPhig, the generated σ2 from the posterior is sigg. And the
generated values are used as the next step’s prior.

vPhi0 <-vPhig
mP0 <-mP1

3.2 Obtain θ2

In the process of drawing θ1, we let the values of m0 and m1 be given. Here we consider drawing
them conditional on st and φ. Now we set the prior for m := (m0 m1)′ as:

m ∼ 1(m1>0)N (m0, σ
2M0), (11)

where the indicator function 1(m1>0) is for identifying m1. This condition means that the mean
growth rate of CCI is positive in expansion and is negative in recession. In the program, we
firstly write as below to set the prior for m:

vM0 <-rbind(-1.2,1.5)
mM0 <-rbind(cbind(500,0),

cbind(0,500))

where vM0 and mM0 correspond to m0 and M0, respectively. Of course, the above values are
not restrictive. But you must set the first element of vM0(here, −1.2) to be negative and
its second one to be positive(here, 1.5) for identification. Conditional on st and φ, we define
ÿt := yt − φ1yt−1 − · · · − φpyt−p, s̈t := st − φ1st−1 − · · · − φpst−p and φ̈ := 1− φ1 − · · · − φp to
rewrite Eq.(1) as:

ÿt = m0φ̈ + m1s̈t + et. (12)

Collecting all the LHS variables into ÿ and all the RHS variables(φ̈ and s̈t) into Ẍ for all t, the
posterior distribution of m has the truncated normal form:

m ∼ 1(m1>0)N (m1, σ
2M1), (13)

4

where

M1 = (M0 + Ẍ ′Ẍ)−1,

m1 = M1(M−1
0 m0 + Ẍ ′ÿ).

(14)

In the program, we firstly attempt to construct the vector ÿ and Ẍ. In order to do so, we
define the vector mXd, mS and mD which, at this point, have the typical element yt, st and 1,
respectively.

mXd <-vY[lag:(t-1)]
mS <-vS[lag:(t-1)]
mD <-matrix(1,nrow=(t-lag),ncol=1)

Then, using a while function, mXd and mS are trasformed into the matrices which have the
typical row (yt · · · yp) and (st · · · sp), respecively. mD is also transformed into the (n − p) × p
matrix with all the elements being one.

i=2
while(i<=lag){

mXd <-cbind(mXd,vY[(lag+1-i):(t-i)])
mS <-cbind(mS,vS[(lag+1-i):(t-i)])
mD <-cbind(mD,matrix(1,nrow=(t-lag),ncol=1))
i <-i+1

}

After that, mS, mD and vYd are transformed into the vector with typical element s̈t, φ̈ and ÿt.
mXd consequently corresponds to Ẍ.

mS <-vS[(lag+1):t]-mS%*%vPhig
mD <-1-mD%*%vPhig
vYd <-vY[(lag+1):t]-mXd%*%vPhig
mXd <-cbind(mD,mS)

Since the prior for m and M have been set, we can set the posterior mean and variance of m,
which are denoted by vM1 and mM1, respectively. After setting the posterior, the value of m is
generated from the posterior distribution, which is vMg. But note that, using a while function,
vMg is kept being generated until the second element of vMg, m1, has the positive value.

vM1<-solve(solve(mM0)+t(mXd)%*%mXd)%*%(solve(mM0)%*%vM0+t(mXd)%*%vYd)
mM1 <-solve(solve(mM0)+t(mXd)%*%mXd)

vMg <-matrix(0,nrow=2,ncol=1)
while(vMg[2]<=0){

vMg <-vM1+sqrt(sigg)*t(chol(mM1))%*%rnorm(2)
}
vM0 <- vMg

The last line means that the generated values for m, vMG, are used for the next step’s prior.

3.3 Obtain θ3

The procedure for drawing st is based on Albert and Chib(1993). Since their procedure is for
the time fixed transition probability model, it is modified to fit the time varying transition
probability. Let yt := {y1 · · · yt}, st := {s1 · · · st} and s−t := sn \ st where n is the number of
all the observations. Then the full conditional distribution for st is given by:

Pr(st|Ωn, s−t) ∝ Pr(st|st−1,zt−1) Pr(st+1|st,zt) Pr(yt, · · · , yp|yt−1, sp)
t+p∏

k=p+1

f(yk|yk−1, sk), for t ≤ p,

Pr(st|Ωn, s−t) ∝ Pr(st|st−1,zt−1) Pr(st+1|st,zt)
t+p∏

k=t

f(yk|yk−1, sk), for p + 1 ≤ t ≤ n− p + 1,

Pr(st|Ωn, s−t) ∝ Pr(st|st−1,zt−1) Pr(st+1|st,zt)
n∏

k=t

f(yk|yk−1, sk), for n− p ≤ t ≤ n.

(15)

5

We need to calculate these distributions for all the possible values of st−1, st and st+1. Working
backwards from t = n, values for st can be simulated from a distribution using the probabilities
generated by Eq.(15). Firstly, we define the vectors for saving the filtered probabilities, Pr(st =
0|Ωt) and Pr(st = 1|Ωt), which are denoted by vQ and vP, respectively.

vQ <-matrix(0,nrow=1,ncol=t)
vP <-matrix(0,nrow=1,ncol=t)

Then we obtain the probabilites for drawing st in backward way, that is, we calculate the
probabilites obtained by Eq.(15). Since, for st = 0, 1, the product of transition probabilities(the
first two terms in Eq.(15)) can be written as:

Pr(st = 0|st−1) Pr(st+1|st = 0) = Pr(st = 0|st−1)
{

Pr(st+1 = 1|st = 0)st+1 + Pr(st+1 = 0|st = 1)(1− st+1)
}
,

Pr(st = 1|st−1) Pr(st+1|st = 1) = Pr(st = 1|st−1)
{

Pr(st+1 = 1|st = 1)st+1 + Pr(st+1 = 0|st = 1)(1− st+1)
}
,

we write:

i=t
while(i>=(lag+1)){

latent <-vG0[1]+vG0[2]*vMpol[(i-1)]+vG0[3]*vS[(i-1)]*vMpol[(i-lag)]+vG0[4]*vS[(i-1)]
vQ[i] <-1-pnorm(latent)
vP[i] <-pnorm(latent)

The above q[i] and p[i] correspond to the transition probabilities Pr(st = 0|st−1) and Pr(st =
1|st−1) given st−1, respectively. Then we next consider Pr(st+1|st) for st = 0, 1 and st+1 = 0, 1.

if (i<t) {latent <-vG0[1]+vG0[2]*vMpol[(i-1)]

vQ[i] <-vQ[i]*(1-pnorm(latent))*(1-vS[(i+1)])+vQ[i]*pnorm(latent)*vS[(i+1)]
vP[i] <-vP[i]*(1-pnorm(latent+vG0[3]*vMpol[(i-1)]+vG0[4]))*(1-vS[(i+1)])
+vP[i]*(pnorm(latent+vG0[3]*vMpol[(i-1)]+vG0[4]))*vS[(i+1)]

}

The newly defined q[i] and p[i] correspond to Pr(st = 0|st−1) Pr(st+1|st = 0) and Pr(st =
1|st−1) Pr(st+1|st = 1), respectively. Then we next consider the part beggining with

∏
k=t in

Eq.(15). To calculate this part, we firstly need to obtain et in Eq.(1). Write:

if (i>(t-lag)){ m = t-i }
else m <-lag

vS0 <-vS
vS1 <-vS
vS0[i] <-0
vS1[i] <-1
c <-0
while(c<=m){

z0 <-vY[(i+c)]-t(vMg)%*%rbind(1,vS0[(i+c)])
z1 <-vY[(i+c)]-t(vMg)%*%rbind(1,vS1[(i+c)])

The above z0 and z1 correspond to yt −m0 and yt −m0 −m1 given the values of st, m0 and
m1 generated in the previous subsection. Since we here consider AR model, we also need to
calculate yt−1 −m0 −m1st−1, · · · , yt−p −m0 −m1st−p. Then we write:

j=1
while(j <=lag){
z0 <-z0-t(vPhig[j])%*%(vY[(i+c-j)]-t(vMg)%*%rbind(1,vS0[(i+c-j)]))
z1 <-z1-t(vPhig[j])%*%(vY[(i+c-j)]-t(vMg)%*%rbind(1,vS1[(i+c-j)]))

j<-j+1
}
vQ[i] <-vQ[i]*exp(-0.5*t(z0)%*%solve(sigg)%*%(z0))
vP[i] <-vP[i]*exp(-0.5*t(z1)%*%solve(sigg)%*%(z1))
c <-c+1

}

The newly obtained z0 and z1 correspond to et = yt−m0−φ1(yt−1−m0)−· · ·−φp(yt−p−m0)
and et = yt −m0 −m1 − φ1(yt−1 −m0 −m1) − · · · − φp(yt−p −m0 −m1), respectively. And,
using a while function, the part beggining with

∏
t=k is obtained, which is newely defined as

vQ[i] and vP[i].

6

vQ[i] <-vQ[i]/(vQ[i]+vP[i])
vP[i] <-1-vQ[i]

r <-runif(1)

if (r<vQ[i]){ vS[i]=0 } else vS[i]=1
i <-(i-1)
}

We set the state as st = 0 if a random vairable following the uniform distribution in [0, 1] is
smaller than Pr(st = 0|Ωt) and as st = 1 otherwise. The uniform random variable in [0, 1] is
generated from a function runif.

if (k>skip){
mRec[,(k-skip)] <-t(vQ)
mPhi[,(k-skip)] <-vPhig
mM[,(k-skip)] <-vMg

}

3.4 Obtain θ4

Since {st}n
t=p+1 is obtained in the previous subsection, it is easy to generate s∗t by using Eq.(6).

But we need to note that any value of s∗t will not always do. Since st = 1 if and only if s∗t ≥ 0,
we need to use a truncated standard normal distribution. Therefore, the procedure for drawing
s∗t is as follows: (i)Generate ut from a standard normal distribution, (ii)check the value of s∗t
and st, (iii)if s∗t ≥ 0 when st = 1, the generated s∗t is accepted, but if s∗t ≤ 0 when st = 1,
repeat (i) and (ii) until a non-negative value of s∗t is generated. Firstly we define the vector
vSstar for saving s∗t for all t.

vSstar <-matrix(0,nrow=1,ncol=t)

Then, using the obatained st in the above subsection, s∗t is generated from the following program.

i <-(lag+1)
while (i <= t){

sstar <-vG0[1]+vG0[2]*vMpol[(i-1)]+vG0[3]*vS[(i-1)]*vMpol[(i-1)]+vG0[4]*vS[(i-1)]
r <-rnorm(1)

if (vS[i]==0){
while((sstar+r) >=0){

r <-rnorm(1)
}

} else
while((sstar+r) <=0){

r <-rnorm(1)
}

vSstar[i] <-sstar+r
i<-i+1
}

In the above, s∗t is obtained by calculating sstar + r, where r is the standard normal random
variable generated by a function rnorm. We here use an if function to satisfy the condition
that s∗t ≥ 0 iff st = 1 and that s∗t ≤ 0 iff st = 0.

3.5 Obtain θ5

Since we have obtained {s∗t }n
t=p+1 in the previous subsection, Eq.(6) becomes a linear regression

without latent variables. Hence γ can be regarded as the linear regression coefficient. In Eq.(6),
collecting all the LHS varibales(s∗t) into s∗, all the RHS variables into W and ut into u for all
t, it can be rewritten as s∗ = Wγ + u. Set the prior for γ:

γ ∼ N (γ0,G0). (16)

Then its posterior distribution is given by:

γ ∼ N (γ1,G1), (17)

where

G1 = (G0 + W ′W)−1,

γ1 = G−1
1 (G−1

0 γ0 + W ′s∗).
(18)

7

The above can be easiliy written in the program because the above model is a simple linear
regression. We here write as below to set the prior for γ and G:

vG0 <-matrix(0,nrow=4,ncol=1)
vG0[1] <-qnorm(1-0.7)
vG0[2] <-0.5
vG0[3] <-0.6
vG0[4] <-qnorm(0.95)-vG0[1]
mG0 <-rbind(cbind(100,0,0,0),

cbind(0,100,0,0),
cbind(0,0,100,0),
cbind(0,0,0,100))

Here vG0 and mG0 correspond to γ0 and G0, respectively. Next we construct the matrix W .

mW<-cbind(matrix(1,nrow=(t-lag),ncol=1),vMpol[(lag):(t-1)],
vMpol[(lag):(t-1)]*vS[(lag):(t-1)],vS[(lag):(t-1)])

Then, since we have set the prior for γ and G, after setting the posterior information, the value
of γ is generated from the posterior distribution. The last line indicates that the generated
values for γ are used for the next step’s prior.

mG1 <-solve(solve(mG0)+t(mW)%*%(mW))
vG1 <-mG1%*%(solve(mG0)%*%vG0+t(mW)%*%(vSstar[(lag+1):t]))
vGg <-vG1+t(chol(mG1))%*%rnorm(4)
vG0 <-vGg
mG0 <-mG1

The following is for showing the intermediate result only when k is a multipls of when. This
condition is if ((k%%when)==0). For the details of a function cat and par, see some R manuals
by yourself, because they are not focus of this note.

cat("Pass no. \n",k)

if (k>burnin){
gs[,(k-burnin)] <-g

if ((k%%when)==0){
cat("** \n")
cat("Estimation Result \n")
cat("** \n")
cat("m0 mean \n",mean(mM[1,1:(k-burnin)]))
cat(" \n")
cat("m0 std.dev \n",sd(mM[1,1:(k-burnin)]))
cat(" \n")

　　　　　　　　　　　　　　　　　　・
　　　　　　　　　　　　　　　　　　・

cat("gamma4 mean \n",mean(mG[4,1:(k-burnin)]))
cat(" \n")
cat("gamma4 std.dev \n",sd(mG[4,1:(k-burnin)]))
cat(" \n")
cat("** \n")

par(mfrow=c(2,1))
plot(ts(vS[2:t]),main="Announced Recession")
plot(ts(mRec[2:t,(k-skip)]),main="Filtered Prob.")

}
}
k <-(k+1)
}

8

4 Remarks

Using Gibbs sampling method opens a way to estimate highly complicated models. One differ-
ence between the maximum likelihood and MCMC is the dealing of latent variables: a latent
variable is treated as unobserved variable in the maximum likelihood estimation, while it is
treated as parameters in MCMC estimation. This difference in treating latent variables enables
us to make the estimated model be easy to be estimated, compared with the maximum likeli-
hood estimation.

Another advantage of MCMC estimation is the problem of degree of freedom. In the max-
imum likelihood estimation, if the parameters number is large compared with the obervation,
the model becomes unstable and the obtained result would not be reliable. But we do not
need to worry about it if we use MCMC estimation. In this note, for example, the number of
parameteres to be estimated is larger than n, which is the observation number.

Other model modification and program modification should be done, following this note. I
lastly write the references used for writing this note.

Albert, J. and Chib, S.(1993) Bayes inference via Gibbs sampling of autoregressive time series
subject to Markov mean and variance shifts, Journal of Business and Economic Statistics,
11, pp.1-15

Filardo, A.J(1994) Business cycle phases and their transitional dynamics, Journal of Business
and Economic Statistics, 12, pp.299-308

Filardo, A.J and Gordon, S.F(1998) Business cycle durations, Journal of Econometrics, 85,
pp.99-123

Hamilton, J.D(1989) A new approach to the economic analysis of nonstationary time series
and the business cycle, Econometrica, 57, pp.357-384

9

