Proposition 1 If $n \times n$ matrices A, B and A - B are positive definite, then $B^{-1} - A^{-1}$ is also positive definite.

Proof. (by Kaiming Zhao, with an assist to Ed Wang, both of WLU.) Note first that A and B are hermitian $(A = A^* \text{ and } B = B^*)$. Then $B^{-1} - A^{-1}$ is pd if and only if $A(B^{-1} - A^{-1})A^*$ is pd. But

$$A(B^{-1} - A^{-1})A^* = A(B^{-1} - A^{-1})A$$

= $(AB^{-1} - I)A$
= $(((A - B) + B)B^{-1} - I)A$
= $(A - B)B^{-1}A$
= $(A - B)B^{-1}(A - B + B)$
= $(A - B)B^{-1}(A - B) + (A - B)$
= $(A - B)B^{-1}(A - B)^* + (A - B)$

is pd because A - B and B^{-1} are pd.

Facts used in the proof (supplied by Ed):

- if K is pd, then so is K^{-1} (eigenvalues are reciprocals)
- if H and K are both pd, then so is $H + K (\langle (H + K)x, x \rangle > 0$ using linearity)
- if K is pd, then H is pd iff KHK is pd (play with $\langle KHKx, x \rangle$)