Proposition 1 If $n \times n$ matrices A, B and $A-B$ are positive definite, then $B^{-1}-A^{-1}$ is also positive definite.

Proof. (by Kaiming Zhao, with an assist to Ed Wang, both of WLU.) Note first that A and B are hermitian $\left(A=A^{*}\right.$ and $\left.B=B^{*}\right)$. Then $B^{-1}-A^{-1}$ is pd if and only if $A\left(B^{-1}-A^{-1}\right) A^{*}$ is pd. But

$$
\begin{aligned}
A\left(B^{-1}-A^{-1}\right) A^{*} & =A\left(B^{-1}-A^{-1}\right) A \\
& =\left(A B^{-1}-I\right) A \\
& =\left(((A-B)+B) B^{-1}-I\right) A \\
& =(A-B) B^{-1} A \\
& =(A-B) B^{-1}(A-B+B) \\
& =(A-B) B^{-1}(A-B)+(A-B) \\
& =(A-B) B^{-1}(A-B)^{*}+(A-B)
\end{aligned}
$$

is pd because $A-B$ and B^{-1} are pd.
Facts used in the proof (supplied by Ed):

- if K is pd, then so is K^{-1} (eigenvalues are reciprocals)
- if H and K are both pd, then so is $H+K(\langle(H+K) x, x\rangle>0$ using linearity)
- if K is pd, then H is pd iff $K H K$ is pd (play with $\langle K H K x, x\rangle$)

