Biostat 776: Other Topics in R

Roger Peng

November 19, 2003

A Hodge-Podge of Stuff

- S4 Classes and Methods
- Lexical Scoping and Statistical Computing

Classes and Methods

- A system for doing object oriented programming
- R is rare because it is both interactive *and* has a system for object orientation.
 - Other languages which support OOP: C++, Java, Lisp,
 Python, Perl
- In R, much of the code for supporting S4 classes/methods is written by John Chambers himself.
 - Chambers, J. (1998) Programming with Data: A Guide to the S Language, Springer, NY.

R has two "styles" of classes and methods

- S3 classes/methods
 - Included with version 3 of the S language.
 - Informal, a little kludgey
 - Sometimes called "old-style" classes/methods
- S4 classes/methods
 - more formal and rigorous
 - Included with S-PLUS 6, R \geq 1.4.0
 - Also called "new-style" classes/methods

Two worlds

- For now (and the forseeable future), S3 classes/methods and S4 classes/methods are *separate* systems.
- Each system can be used fairly independently of the other.
- Developers of new projects (you!) are encouraged to use the S4 style classes/methods.
 - Used extensively in the Bioconductor project
- But many developers still use S3 classes/methods because they are "quick and dirty".
- Oh well....

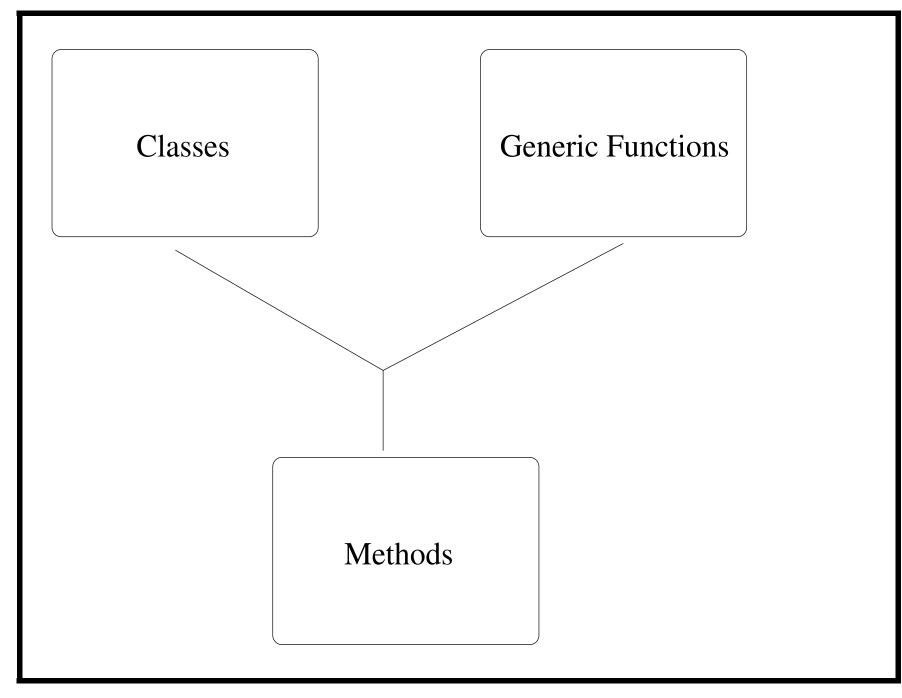
Object Oriented Programming in R

- A *class* is a description of an thing. A class can be defined using setClass().
- An *object* is an instance of a class. Objects can be created using new().
- A generic function is an R function which dispatches methods. A generic function typically encapsulates a "generic" concept.

- e.g. plot, mean, logLik, residuals, predict, \dots

The generic function does not actually do any computation.

• A *method* is the implementation of a generic function for an object of a particular class.



Things to look up

- The help files for the 'methods' package are extensive do read them.
- Check out:

- ?setClass, ?setMethod, ?setGeneric, ?Methods

• Some of it gets technical, but don't worry about that for now.

Classes

All objects in R have a class which can be determined by the **class** function

- > class(1)
- [1] "numeric"
- > class(TRUE)
- [1] "logical"
- > class(rnorm(100))
- [1] "numeric"
- > class(NA)
- [1] "logical"
- > class("asdf")
- [1] "character"

>

```
Classes (cont'd)
```

```
> x <- rnorm(100)
> y <- x + rnorm(100)
> fit <- lm(y ~ x)
> class(fit)
[1] "lm"
>
```

Generics/Methods in R

- S4 and S3 style generic functions look different but conceptually, they are the same (they play the same role).
- When you program you can
 - 1. Write new methods for an existing generic function
 - 2. Create your own generics and associated methods

An S3 generic function (in the 'base' package)

```
> mean
function (x, ...)
UseMethod("mean")
<environment: namespace:base>
>
```

An S4 generic function (from the 'methods' package)

> show

standardGeneric for "show" defined from package "methods"

function (object)
standardGeneric("show")
<environment: 0x8d7cdc8>
Methods may be defined for arguments: object

>

The generic/method mechanism

The first argument of a generic function is an *object* of a particular class (there may be a bunch of other arguments)

- 1. The generic function checks the class of the object.
- 2. A search is done to see if there is an appropriate method for that class.
- 3. If there exists a method for that class, then that method is called on the object and we're done.
- 4. If a method for that class does *not* exist, a search is done to see if there is a default method for the generic. If a default exists, then the default method is called.
- 5. If a default method doesn't exist, then an error is thrown.

Example 1

- > x <- rnorm(100)
- > mean(x)
- [1] -0.06846675
- 1. The class of x is "numeric".
- 2. But there is no mean method for "numeric" objects!
- 3. So we call the default function mean.default.

```
> mean.default
function (x, trim = 0, na.rm = FALSE, ...)
{
    ## ... Skip 18 lines ...
    if (is.integer(x))
        sum(as.numeric(x))/n
    else sum(x)/n
}
<environment: namespace:base>
>
```

Example 2

```
> df <- data.frame(x = rnorm(100), y = rnorm(100, 1))
> mean(df)
```

x y 0.002565053 0.972148319

1. The class of df is "data.frame".

2. There is a method for "data.frame" objects!

```
3. We call mean.data.frame on df.
```

```
> mean.data.frame
function (x, ...)
sapply(x, mean, ...)
<environment: namespace:base>
>
```

NOTE: Generally, you should *not* call methods directly. Rather, use the generic function and let the method be dispatched automatically.

Write your own methods!

If you write new methods for new classes, you'll probably end up writing methods for the following generics:

- print/show
- summary
- plot

You could write a new method for an existing class, but more likely you'll want to write a method for a class that *you* create.

Why would you want to create a new class?

- To represent new types of data
 - e.g. gene expression, space-time, hierarchical, sparse matrices
- New concepts/ideas
 - e.g. a fitted point process model, mixed-effects models
- To abstract implementation details from the user

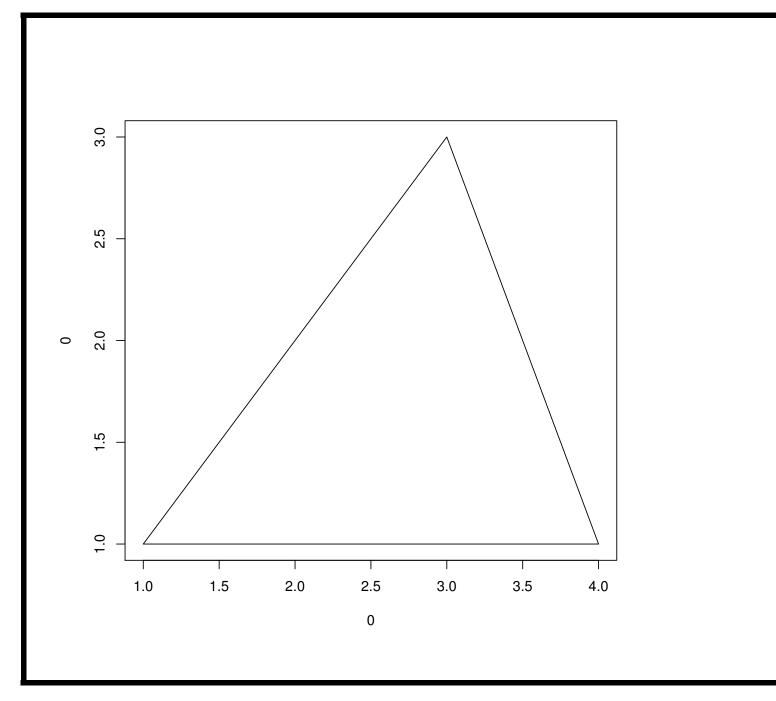
I say things are "new" meaning that R does not know about them (not that they are new to the statistical community).

```
Example: A Sparse Matrix
```

```
# Sparse general matrix in triplet format
setClass("tripletMatrix",
         representation(i = "integer",
                        j = "integer",
                        x = "numeric",
                        Dim = "integer"))
setMethod("crossprod",
          signature(x = "tripletMatrix",
                    y = "tripletMatrix"),
                    ## code for cross products
```

```
Example: A polygon class
setClass("polygon",
         representation(x = "numeric",
                          y = "numeric"))
setMethod("plot", "polygon",
           function(x, y, \ldots) {
               xlim <- range(x@x)</pre>
               ylim <- range(x@y)</pre>
               plot(0, 0, type = "n", xlim = xlim,
                     ylim = ylim , ...)
               xp <- c(x@x, x@x[1])
               yp <- c(x@y, x@y[1])</pre>
               lines(xp, yp)
          })
```

```
> setClass("polygon", [ ...OMITTED... ]
[1] "polygon"
>
> setMethod("plot", "polygon", [ ...OMITTED... ]
Creating a new generic function for "plot" in ".GlobalEnv"
[1] "plot"
> p <- new("polygon", x = c(1,2,3,4), y = c(1,2,3,1))
> plot(p)
```



Where to look, places to start

- The best way to learn this stuff is to look at examples.
- Sadly, there aren't too many examples on CRAN which use S4 classes/methods.
- My suggestions:
 - Bioconductor (http://www.bioconductor.org) a rich resource, even if you know nothing about bioinformatics
 - Some packages on CRAN (as far as I know) SparseM,
 gpclib (poorly written), flexmix, its, lme4, orientlib, pixmap
 - Version 1.8.0 of the base R installation comes with a package 'mle' which use S4 classes/methods. It's a small package and is a good place to start.

Pause

Lexical Scoping and Statistical Computing

- 1. What is lexical scoping?
- 2. How can it help me with statistical computing?
- 3. Examples

Scoping Rules

- Rules for assigning values to *free variables*
- A free variable is a variable that is
 - Not a formal argument to a function
 - Not assigned inside a function (i.e. a local variable)

Example 1

- x is a formal argument
- a is a local variable
- > f(2)

????

Example 2

```
g <- function(x) {
    a <- 3
    x + a + y
}</pre>
```

- x is a formal argument
- a is a local variable
- y is a *free variable*
- > g(2) ????

Dynamic Scoping (old school)

- Free variables are looked up in the environment in which the function was *called* (function call stack)
- In R, this is called the *parent frame*
 - can be accessed via parent.frame()
- e.g. If you call a function from the command line, the parent frame is the global workspace.

Lexical Scoping (modern)

- Free variables are looked up in the environment in which the function was *defined*.
- In R, this is called the *parent environment*
 - can be accessed via parent.env()
- In other words, free variables are looked up according to the *textual* description of the function

Note: If a function is defined in the global workspace and is also called from the global workspace, then the parent environment and the parent frame are the same.

Languages that Support Lexical Scoping

- Scheme
- R (much like Scheme)
- Common Lisp
- Perl
- Python

```
Example 2 (cont'd)
> rm(list = ls(all = TRUE)) ## Clear workspace
> g <- function(x) {</pre>
  a <- 3
+
+ x + a + y
+ }
> g(2)
Error in g(2) : Object "y" not found
> y <- 3
> g(2)
[1] 8
>
```

Here, the function g() is defined in the *global workspace*. Therefore, the parent environment is the global workspace.

Example 2a

```
> gg <- function(x) {
+     y <- 2
+     g(x)
+ }
> gg(2)
Error in g(x) : Object "y" not found
> y <- 3
> gg(2)
[1] 8
```

Moving along

Can a function have something *other* than the global workspace as the parent environment? Yes!

```
make.pow <- function(n) {
    pow <- function(x) {
        x^n
    }
    pow
}</pre>
```

make.pow returns a *function* which takes a single argument x. The function returned by make.pow has a free variable, n.

Example 3

Example 3 (cont'd)

- The function cube was defined inside the make.pow function. Therefore, the parent environment of cube is the body of the make.pow function, not the global workspace.
- Note that when the cube function is printed, the parent environment is printed at the bottom of the function body:
 <environment: 0x8f39ce8>
- If a function is defined somewhere besides the global workspace, the parent environment is printed along with the function body.

Consequences of Lexical Scoping

- In R, all objects must be stored in memory all functions must carry a pointer to their respective parent environments, which could be anywhere.
- In S-PLUS, free variables are always looked up in the global workspace everything can be stored on disk because the "parent environment" of all functions is the same.

Why should I care?

- Lexical scoping provides a convienent way to create *function closures*
- Can be used to maintain local state
- Extremely useful for plug 'n' play optimization routines

Application: Optimization

- Optimization routines in R (optim, nlm, optimize) require you to pass a function whose argument is a vector of parameters.
- However, an objective function might depend on a host of other things, (including *data*).
- When writing software which does optimization, it may be desirable to allow the user to hold certain parameters fixed.

```
Example: Maximum Likelihood for a Normal model
negloglik <- function(p, data) {</pre>
    mu <- p[1]
    sigma <- p[2]</pre>
    a <- -0.5 * length(data) * log(2 * pi * sigma<sup>2</sup>)
    b <- -0.5 * sum((data - mu)^2) / (sigma^2)</pre>
    -(a + b) ## Return negative LL
}
> normals <- rnorm(100)</pre>
> out <- optim(c(1, 2), negloglik, data = normals,
                method = "BFGS")
> out[["par"]]
[1] -0.001523056 0.963032909
```

Note: optim() and nlm() *minimize* functions by default, so you usually have to compute the negative log-likelihood.

```
Example (cont'd): Using lexical scoping
Write a "constructor" function:
make.negloglik <- function(data, fixed=c(FALSE, FALSE)) {</pre>
    op <- fixed
    function(p) {
         op[!fixed] <- p</pre>
         mu <- op[1]
         sigma <- op[2]</pre>
         a <- -0.5 * length(data) * log(2*pi*sigma^2)</pre>
         b <- -0.5 * sum((data - mu)^2) / (sigma^2)</pre>
         -(a + b)
    }
}
```

```
Example (cont'd): Construct the likelihood function
```

```
> set.seed(1); normals <- rnorm(100, 1, 2)</pre>
> nLL <- make.negloglik(normals)</pre>
> nLL
function(p) {
         op[!fixed] <- p</pre>
        mu <- op[1]
         sigma <- op[2]</pre>
         a <- -0.5 * length(data) * log(2 * pi * sigma<sup>2</sup>)
         b <- -0.5 * sum((data - mu)^2) / (sigma^2)
        -(a + b)
    }
<environment: 0x8f78ccc>
> ls(environment(nLL))
[1] "data" "fixed" "op"
```

Example (cont'd): Estimate both parameters

Example (cont'd): Hold parameters fixed

Fixing $\sigma = 2$:

```
> nLL <- make.negloglik(normals, fixed=c(FALSE, 2))
> optimize(nLL, c(-1, 3))[["minimum"]]
[1] 1.217775
> mean(normals)
```

```
[1] 1.217775
```

```
Example (cont'd)
```

Fixing $\mu = 1$:

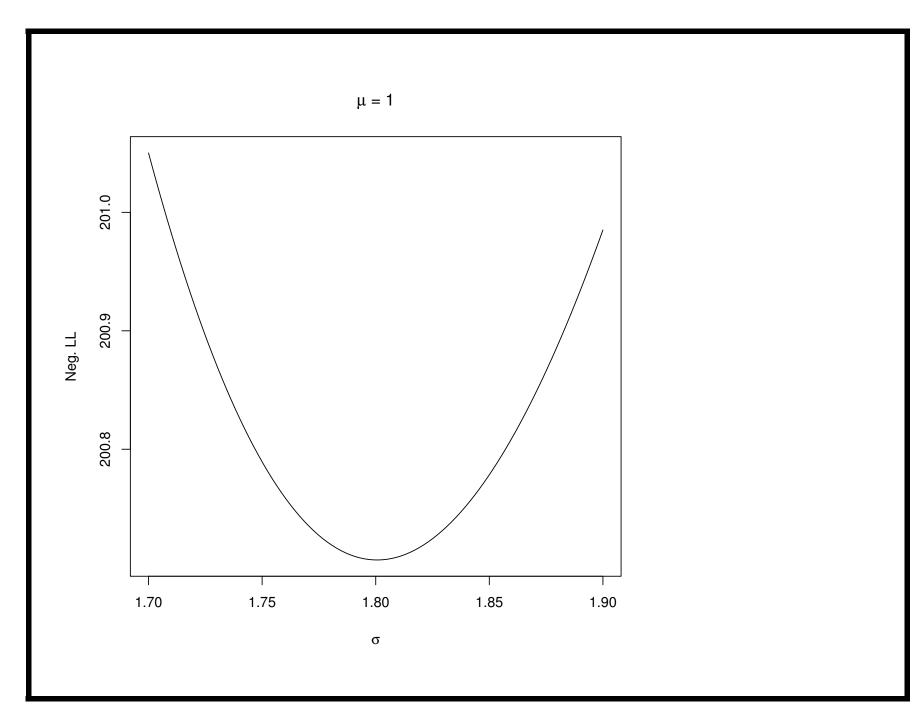
```
> nLL <- make.negloglik(normals, fixed=c(1, FALSE))</pre>
```

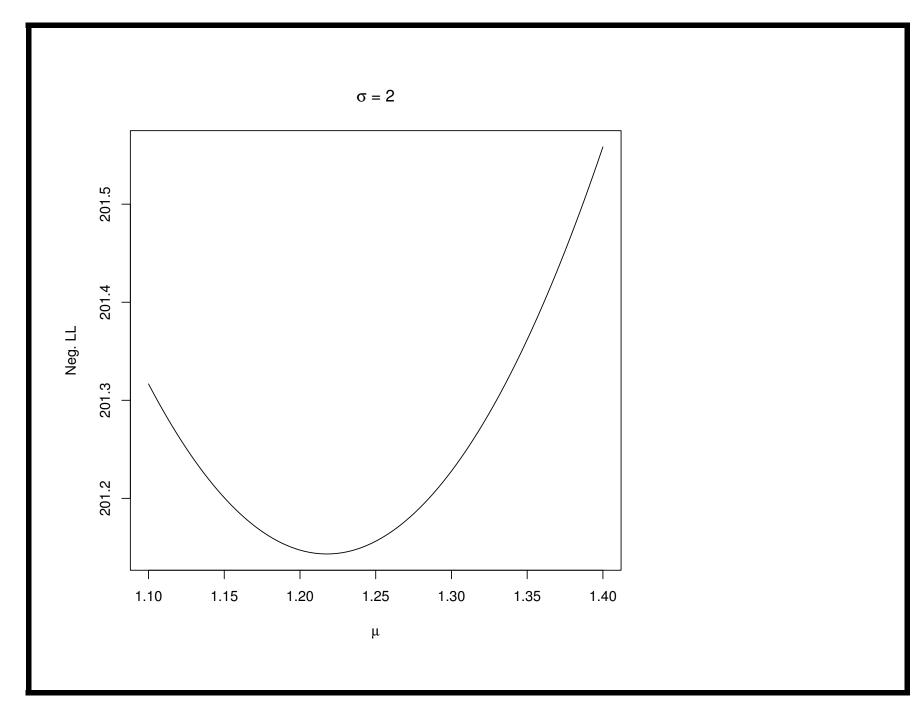
```
> optimize(nLL, c(1e-6, 5))[["minimum"]]
```

```
[1] 1.800620
```

```
> sd(normals)
```

```
[1] 1.796399
```





Lexical Scoping Summary

- Objective functions can be "built" which contain all of the necessary data and other things.
- No need to carry around long argument lists useful for interactive/exploratory work.
- Code can be simplified/cleaned up.

Reference

• Gentleman, R. and Ihaka, R. (2000), "Lexical Scope and Statistical Computing", JCGS, 9, 491-508.

Use R!

Tell your friends!