
Biostat 776: Other Topics in R

Roger Peng

November 19, 2003

1

A Hodge-Podge of Stuff

• S4 Classes and Methods

• Lexical Scoping and Statistical Computing

2

Classes and Methods

• A system for doing object oriented programming

• R is rare because it is both interactive and has a system for

object orientation.

– Other languages which support OOP: C++, Java, Lisp,

Python, Perl

• In R, much of the code for supporting S4 classes/methods is

written by John Chambers himself.

– Chambers, J. (1998) Programming with Data: A Guide to

the S Language, Springer, NY.

3

R has two “styles” of classes and methods

• S3 classes/methods

– Included with version 3 of the S language.

– Informal, a little kludgey

– Sometimes called “old-style” classes/methods

• S4 classes/methods

– more formal and rigorous

– Included with S-PLUS 6, R ≥ 1.4.0

– Also called “new-style” classes/methods

4

Two worlds

• For now (and the forseeable future), S3 classes/methods and S4

classes/methods are separate systems.

• Each system can be used fairly independently of the other.

• Developers of new projects (you!) are encouraged to use the S4

style classes/methods.

– Used extensively in the Bioconductor project

• But many developers still use S3 classes/methods because they

are “quick and dirty”.

• Oh well. . . .

5

Object Oriented Programming in R

• A class is a description of an thing. A class can be defined

using setClass().

• An object is an instance of a class. Objects can be created

using new().

• A generic function is an R function which dispatches methods.

A generic function typically encapsulates a “generic” concept.

– e.g. plot, mean, logLik, residuals, predict, . . .

The generic function does not actually do any computation.

• A method is the implementation of a generic function for an

object of a particular class.

6

Generic FunctionsClasses

Methods

7

Things to look up

• The help files for the ‘methods’ package are extensive – do read

them.

• Check out:

– ?setClass, ?setMethod, ?setGeneric, ?Methods

• Some of it gets technical, but don’t worry about that for now.

8

Classes

All objects in R have a class which can be determined by the class

function

> class(1)

[1] "numeric"

> class(TRUE)

[1] "logical"

> class(rnorm(100))

[1] "numeric"

> class(NA)

[1] "logical"

> class("asdf")

[1] "character"

>

9

Classes (cont’d)

> x <- rnorm(100)

> y <- x + rnorm(100)

> fit <- lm(y ~ x)

> class(fit)

[1] "lm"

>

10

Generics/Methods in R

• S4 and S3 style generic functions look different but

conceptually, they are the same (they play the same role).

• When you program you can

1. Write new methods for an existing generic function

2. Create your own generics and associated methods

11

An S3 generic function (in the ‘base’ package)

> mean

function (x, ...)

UseMethod("mean")

<environment: namespace:base>

>

12

An S4 generic function (from the ‘methods’ package)

> show

standardGeneric for "show" defined from package "methods"

function (object)

standardGeneric("show")

<environment: 0x8d7cdc8>

Methods may be defined for arguments: object

>

13

The generic/method mechanism

The first argument of a generic function is an object of a particular

class (there may be a bunch of other arguments)

1. The generic function checks the class of the object.

2. A search is done to see if there is an appropriate method for

that class.

3. If there exists a method for that class, then that method is

called on the object and we’re done.

4. If a method for that class does not exist, a search is done to see

if there is a default method for the generic. If a default exists,

then the default method is called.

5. If a default method doesn’t exist, then an error is thrown.

14

Example 1

> x <- rnorm(100)

> mean(x)

[1] -0.06846675

1. The class of x is “numeric”.

2. But there is no mean method for “numeric” objects!

3. So we call the default function mean.default.

15

> mean.default

function (x, trim = 0, na.rm = FALSE, ...)

{

... Skip 18 lines ...

if (is.integer(x))

sum(as.numeric(x))/n

else sum(x)/n

}

<environment: namespace:base>

>

16

Example 2

> df <- data.frame(x = rnorm(100), y = rnorm(100, 1))

> mean(df)

x y

0.002565053 0.972148319

1. The class of df is “data.frame”.

2. There is a method for “data.frame” objects!

3. We call mean.data.frame on df.

17

> mean.data.frame

function (x, ...)

sapply(x, mean, ...)

<environment: namespace:base>

>

NOTE: Generally, you should not call methods directly. Rather,

use the generic function and let the method be dispatched

automatically.

18

Write your own methods!

If you write new methods for new classes, you’ll probably end up

writing methods for the following generics:

• print/show

• summary

• plot

You could write a new method for an existing class, but more likely

you’ll want to write a method for a class that you create.

19

Why would you want to create a new class?

• To represent new types of data

– e.g. gene expression, space-time, hierarchical, sparse

matrices

• New concepts/ideas

– e.g. a fitted point process model, mixed-effects models

• To abstract implementation details from the user

I say things are “new” meaning that R does not know about them

(not that they are new to the statistical community).

20

Example: A Sparse Matrix

Sparse general matrix in triplet format

setClass("tripletMatrix",

representation(i = "integer",

j = "integer",

x = "numeric",

Dim = "integer"))

setMethod("crossprod",

signature(x = "tripletMatrix",

y = "tripletMatrix"),

code for cross products

)

21

Example: A polygon class

setClass("polygon",

representation(x = "numeric",

y = "numeric"))

setMethod("plot", "polygon",

function(x, y, ...) {

xlim <- range(x@x)

ylim <- range(x@y)

plot(0, 0, type = "n", xlim = xlim,

ylim = ylim , ...)

xp <- c(x@x, x@x[1])

yp <- c(x@y, x@y[1])

lines(xp, yp)

})

22

> setClass("polygon", [...OMITTED...]

[1] "polygon"

>

> setMethod("plot", "polygon", [...OMITTED...]

Creating a new generic function for "plot" in ".GlobalEnv"

[1] "plot"

> p <- new("polygon", x = c(1,2,3,4), y = c(1,2,3,1))

> plot(p)

23

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

0

0

24

Where to look, places to start

• The best way to learn this stuff is to look at examples.

• Sadly, there aren’t too many examples on CRAN which use S4

classes/methods.

• My suggestions:

– Bioconductor (http://www.bioconductor.org) — a rich

resource, even if you know nothing about bioinformatics

– Some packages on CRAN (as far as I know) — SparseM,

gpclib (poorly written), flexmix, its, lme4, orientlib, pixmap

– Version 1.8.0 of the base R installation comes with a

package ‘mle’ which use S4 classes/methods. It’s a small

package and is a good place to start.

25

Pause

26

Lexical Scoping and Statistical Computing

1. What is lexical scoping?

2. How can it help me with statistical computing?

3. Examples

27

Scoping Rules

• Rules for assigning values to free variables

• A free variable is a variable that is

– Not a formal argument to a function

– Not assigned inside a function (i.e. a local variable)

28

Example 1

f <- function(x) {

a <- 3

x + a

}

• x is a formal argument

• a is a local variable

> f(2)

????

29

Example 2

g <- function(x) {

a <- 3

x + a + y

}

• x is a formal argument

• a is a local variable

• y is a free variable

> g(2)

????

30

Dynamic Scoping (old school)

• Free variables are looked up in the environment in which the

function was called (function call stack)

• In R, this is called the parent frame

– can be accessed via parent.frame()

• e.g. If you call a function from the command line, the parent

frame is the global workspace.

31

Lexical Scoping (modern)

• Free variables are looked up in the environment in which the

function was defined.

• In R, this is called the parent environment

– can be accessed via parent.env()

• In other words, free variables are looked up according to the

textual description of the function

Note: If a function is defined in the global workspace and is also

called from the global workspace, then the parent environment and

the parent frame are the same.

32

Languages that Support Lexical Scoping

• Scheme

• R (much like Scheme)

• Common Lisp

• Perl

• Python

33

Example 2 (cont’d)

> rm(list = ls(all = TRUE)) ## Clear workspace

> g <- function(x) {

+ a <- 3

+ x + a + y

+ }

> g(2)

Error in g(2) : Object "y" not found

> y <- 3

> g(2)

[1] 8

>

Here, the function g() is defined in the global workspace.

Therefore, the parent environment is the global workspace.

34

Example 2a

> gg <- function(x) {

+ y <- 2

+ g(x)

+ }

> gg(2)

Error in g(x) : Object "y" not found

> y <- 3

> gg(2)

[1] 8

35

Moving along

Can a function have something other than the global workspace as

the parent environment? Yes!

make.pow <- function(n) {

pow <- function(x) {

x^n

}

pow

}

make.pow returns a function which takes a single argument x. The

function returned by make.pow has a free variable, n.

36

Example 3

> cube <- make.pow(3)

> cube

function(x) {

x^n

}

<environment: 0x8f39ce8>

> cube(4) ## No error here!

[1] 64

37

Example 3 (cont’d)

• The function cube was defined inside the make.pow function.

Therefore, the parent environment of cube is the body of the

make.pow function, not the global workspace.

• Note that when the cube function is printed, the parent

environment is printed at the bottom of the function body:

<environment: 0x8f39ce8>

• If a function is defined somewhere besides the global workspace,

the parent environment is printed along with the function body.

38

Consequences of Lexical Scoping

• In R, all objects must be stored in memory — all functions

must carry a pointer to their respective parent environments,

which could be anywhere.

• In S-PLUS, free variables are always looked up in the global

workspace — everything can be stored on disk because the

“parent environment” of all functions is the same.

39

Why should I care?

• Lexical scoping provides a convienent way to create function

closures

• Can be used to maintain local state

• Extremely useful for plug ’n’ play optimization routines

40

Application: Optimization

• Optimization routines in R (optim, nlm, optimize) require you

to pass a function whose argument is a vector of parameters.

• However, an objective function might depend on a host of

other things, (including data).

• When writing software which does optimization, it may be

desirable to allow the user to hold certain parameters fixed.

41

Example: Maximum Likelihood for a Normal model

negloglik <- function(p, data) {

mu <- p[1]

sigma <- p[2]

a <- -0.5 * length(data) * log(2 * pi * sigma^2)

b <- -0.5 * sum((data - mu)^2) / (sigma^2)

-(a + b) ## Return negative LL

}

> normals <- rnorm(100)

> out <- optim(c(1, 2), negloglik, data = normals,

method = "BFGS")

> out[["par"]]

[1] -0.001523056 0.963032909

Note: optim() and nlm() minimize functions by default, so you

usually have to compute the negative log-likelihood.

42

Example (cont’d): Using lexical scoping

Write a “constructor” function:

make.negloglik <- function(data, fixed=c(FALSE, FALSE)) {

op <- fixed

function(p) {

op[!fixed] <- p

mu <- op[1]

sigma <- op[2]

a <- -0.5 * length(data) * log(2*pi*sigma^2)

b <- -0.5 * sum((data - mu)^2) / (sigma^2)

-(a + b)

}

}

43

Example (cont’d): Construct the likelihood function

> set.seed(1); normals <- rnorm(100, 1, 2)

> nLL <- make.negloglik(normals)

> nLL

function(p) {

op[!fixed] <- p

mu <- op[1]

sigma <- op[2]

a <- -0.5 * length(data) * log(2 * pi * sigma^2)

b <- -0.5 * sum((data - mu)^2) / (sigma^2)

-(a + b)

}

<environment: 0x8f78ccc>

> ls(environment(nLL))

[1] "data" "fixed" "op"

44

Example (cont’d): Estimate both parameters

> optim(c(mu=0,sigma=1), nLL, method="BFGS")[["par"]]

mu sigma

1.217758 1.787531

> c(mean(normals), sd(normals))

[1] 1.217775 1.796399

45

Example (cont’d): Hold parameters fixed

Fixing σ = 2:

> nLL <- make.negloglik(normals, fixed=c(FALSE, 2))

> optimize(nLL, c(-1, 3))[["minimum"]]

[1] 1.217775

> mean(normals)

[1] 1.217775

46

Example (cont’d)

Fixing µ = 1:

> nLL <- make.negloglik(normals, fixed=c(1, FALSE))

> optimize(nLL, c(1e-6, 5))[["minimum"]]

[1] 1.800620

> sd(normals)

[1] 1.796399

47

Example (cont’d): Plot the likelihood function

nLL <- make.negloglik(normals, fixed=c(1, FALSE))

x <- seq(1.7, 1.9, len = 100)

y <- sapply(x, nLL) ## nLL is not vectorized!

plot(x, y, type = "l",

xlab= expression(sigma),

ylab = "Neg. LL",

main = expression(paste(mu, " = 1")))

48

1.70 1.75 1.80 1.85 1.90

µ = 1

σ

N
eg

. L
L

20
0.

8
20

0.
9

20
1.

0

49

1.10 1.15 1.20 1.25 1.30 1.35 1.40

20
1.

2
20

1.
3

20
1.

4
20

1.
5

σ = 2

µ

N
eg

. L
L

50

Lexical Scoping Summary

• Objective functions can be “built” which contain all of the

necessary data and other things.

• No need to carry around long argument lists – useful for

interactive/exploratory work.

• Code can be simplified/cleaned up.

51

Reference

• Gentleman, R. and Ihaka, R. (2000), “Lexical Scope and

Statistical Computing”, JCGS, 9, 491-508.

52

Use R!

Tell your friends!

53

