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A Hodge-Podge of Stuff

• S4 Classes and Methods

• Lexical Scoping and Statistical Computing
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Classes and Methods

• A system for doing object oriented programming

• R is rare because it is both interactive and has a system for

object orientation.

– Other languages which support OOP: C++, Java, Lisp,

Python, Perl

• In R, much of the code for supporting S4 classes/methods is

written by John Chambers himself.

– Chambers, J. (1998) Programming with Data: A Guide to

the S Language, Springer, NY.
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R has two “styles” of classes and methods

• S3 classes/methods

– Included with version 3 of the S language.

– Informal, a little kludgey

– Sometimes called “old-style” classes/methods

• S4 classes/methods

– more formal and rigorous

– Included with S-PLUS 6, R ≥ 1.4.0

– Also called “new-style” classes/methods
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Two worlds

• For now (and the forseeable future), S3 classes/methods and S4

classes/methods are separate systems.

• Each system can be used fairly independently of the other.

• Developers of new projects (you!) are encouraged to use the S4

style classes/methods.

– Used extensively in the Bioconductor project

• But many developers still use S3 classes/methods because they

are “quick and dirty”.

• Oh well. . . .
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Object Oriented Programming in R

• A class is a description of an thing. A class can be defined

using setClass().

• An object is an instance of a class. Objects can be created

using new().

• A generic function is an R function which dispatches methods.

A generic function typically encapsulates a “generic” concept.

– e.g. plot, mean, logLik, residuals, predict, . . .

The generic function does not actually do any computation.

• A method is the implementation of a generic function for an

object of a particular class.
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Generic FunctionsClasses

Methods
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Things to look up

• The help files for the ‘methods’ package are extensive – do read

them.

• Check out:

– ?setClass, ?setMethod, ?setGeneric, ?Methods

• Some of it gets technical, but don’t worry about that for now.
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Classes

All objects in R have a class which can be determined by the class

function

> class(1)

[1] "numeric"

> class(TRUE)

[1] "logical"

> class(rnorm(100))

[1] "numeric"

> class(NA)

[1] "logical"

> class("asdf")

[1] "character"

>
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Classes (cont’d)

> x <- rnorm(100)

> y <- x + rnorm(100)

> fit <- lm(y ~ x)

> class(fit)

[1] "lm"

>
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Generics/Methods in R

• S4 and S3 style generic functions look different but

conceptually, they are the same (they play the same role).

• When you program you can

1. Write new methods for an existing generic function

2. Create your own generics and associated methods
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An S3 generic function (in the ‘base’ package)

> mean

function (x, ...)

UseMethod("mean")

<environment: namespace:base>

>
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An S4 generic function (from the ‘methods’ package)

> show

standardGeneric for "show" defined from package "methods"

function (object)

standardGeneric("show")

<environment: 0x8d7cdc8>

Methods may be defined for arguments: object

>
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The generic/method mechanism

The first argument of a generic function is an object of a particular

class (there may be a bunch of other arguments)

1. The generic function checks the class of the object.

2. A search is done to see if there is an appropriate method for

that class.

3. If there exists a method for that class, then that method is

called on the object and we’re done.

4. If a method for that class does not exist, a search is done to see

if there is a default method for the generic. If a default exists,

then the default method is called.

5. If a default method doesn’t exist, then an error is thrown.
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Example 1

> x <- rnorm(100)

> mean(x)

[1] -0.06846675

1. The class of x is “numeric”.

2. But there is no mean method for “numeric” objects!

3. So we call the default function mean.default.
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> mean.default

function (x, trim = 0, na.rm = FALSE, ...)

{

## ... Skip 18 lines ...

if (is.integer(x))

sum(as.numeric(x))/n

else sum(x)/n

}

<environment: namespace:base>

>

16



Example 2

> df <- data.frame(x = rnorm(100), y = rnorm(100, 1))

> mean(df)

x y

0.002565053 0.972148319

1. The class of df is “data.frame”.

2. There is a method for “data.frame” objects!

3. We call mean.data.frame on df.
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> mean.data.frame

function (x, ...)

sapply(x, mean, ...)

<environment: namespace:base>

>

NOTE: Generally, you should not call methods directly. Rather,

use the generic function and let the method be dispatched

automatically.
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Write your own methods!

If you write new methods for new classes, you’ll probably end up

writing methods for the following generics:

• print/show

• summary

• plot

You could write a new method for an existing class, but more likely

you’ll want to write a method for a class that you create.
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Why would you want to create a new class?

• To represent new types of data

– e.g. gene expression, space-time, hierarchical, sparse

matrices

• New concepts/ideas

– e.g. a fitted point process model, mixed-effects models

• To abstract implementation details from the user

I say things are “new” meaning that R does not know about them

(not that they are new to the statistical community).
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Example: A Sparse Matrix

# Sparse general matrix in triplet format

setClass("tripletMatrix",

representation(i = "integer",

j = "integer",

x = "numeric",

Dim = "integer"))

setMethod("crossprod",

signature(x = "tripletMatrix",

y = "tripletMatrix"),

## code for cross products

)
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Example: A polygon class

setClass("polygon",

representation(x = "numeric",

y = "numeric"))

setMethod("plot", "polygon",

function(x, y, ...) {

xlim <- range(x@x)

ylim <- range(x@y)

plot(0, 0, type = "n", xlim = xlim,

ylim = ylim , ...)

xp <- c(x@x, x@x[1])

yp <- c(x@y, x@y[1])

lines(xp, yp)

})
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> setClass("polygon", [ ...OMITTED... ]

[1] "polygon"

>

> setMethod("plot", "polygon", [ ...OMITTED... ]

Creating a new generic function for "plot" in ".GlobalEnv"

[1] "plot"

> p <- new("polygon", x = c(1,2,3,4), y = c(1,2,3,1))

> plot(p)
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Where to look, places to start

• The best way to learn this stuff is to look at examples.

• Sadly, there aren’t too many examples on CRAN which use S4

classes/methods.

• My suggestions:

– Bioconductor (http://www.bioconductor.org) — a rich

resource, even if you know nothing about bioinformatics

– Some packages on CRAN (as far as I know) — SparseM,

gpclib (poorly written), flexmix, its, lme4, orientlib, pixmap

– Version 1.8.0 of the base R installation comes with a

package ‘mle’ which use S4 classes/methods. It’s a small

package and is a good place to start.
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Pause
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Lexical Scoping and Statistical Computing

1. What is lexical scoping?

2. How can it help me with statistical computing?

3. Examples
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Scoping Rules

• Rules for assigning values to free variables

• A free variable is a variable that is

– Not a formal argument to a function

– Not assigned inside a function (i.e. a local variable)
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Example 1

f <- function(x) {

a <- 3

x + a

}

• x is a formal argument

• a is a local variable

> f(2)

????
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Example 2

g <- function(x) {

a <- 3

x + a + y

}

• x is a formal argument

• a is a local variable

• y is a free variable

> g(2)

????
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Dynamic Scoping (old school)

• Free variables are looked up in the environment in which the

function was called (function call stack)

• In R, this is called the parent frame

– can be accessed via parent.frame()

• e.g. If you call a function from the command line, the parent

frame is the global workspace.
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Lexical Scoping (modern)

• Free variables are looked up in the environment in which the

function was defined.

• In R, this is called the parent environment

– can be accessed via parent.env()

• In other words, free variables are looked up according to the

textual description of the function

Note: If a function is defined in the global workspace and is also

called from the global workspace, then the parent environment and

the parent frame are the same.
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Languages that Support Lexical Scoping

• Scheme

• R (much like Scheme)

• Common Lisp

• Perl

• Python
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Example 2 (cont’d)

> rm(list = ls(all = TRUE)) ## Clear workspace

> g <- function(x) {

+ a <- 3

+ x + a + y

+ }

> g(2)

Error in g(2) : Object "y" not found

> y <- 3

> g(2)

[1] 8

>

Here, the function g() is defined in the global workspace.

Therefore, the parent environment is the global workspace.
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Example 2a

> gg <- function(x) {

+ y <- 2

+ g(x)

+ }

> gg(2)

Error in g(x) : Object "y" not found

> y <- 3

> gg(2)

[1] 8
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Moving along

Can a function have something other than the global workspace as

the parent environment? Yes!

make.pow <- function(n) {

pow <- function(x) {

x^n

}

pow

}

make.pow returns a function which takes a single argument x. The

function returned by make.pow has a free variable, n.
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Example 3

> cube <- make.pow(3)

> cube

function(x) {

x^n

}

<environment: 0x8f39ce8>

> cube(4) ## No error here!

[1] 64
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Example 3 (cont’d)

• The function cube was defined inside the make.pow function.

Therefore, the parent environment of cube is the body of the

make.pow function, not the global workspace.

• Note that when the cube function is printed, the parent

environment is printed at the bottom of the function body:

<environment: 0x8f39ce8>

• If a function is defined somewhere besides the global workspace,

the parent environment is printed along with the function body.

38



Consequences of Lexical Scoping

• In R, all objects must be stored in memory — all functions

must carry a pointer to their respective parent environments,

which could be anywhere.

• In S-PLUS, free variables are always looked up in the global

workspace — everything can be stored on disk because the

“parent environment” of all functions is the same.
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Why should I care?

• Lexical scoping provides a convienent way to create function

closures

• Can be used to maintain local state

• Extremely useful for plug ’n’ play optimization routines
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Application: Optimization

• Optimization routines in R (optim, nlm, optimize) require you

to pass a function whose argument is a vector of parameters.

• However, an objective function might depend on a host of

other things, (including data).

• When writing software which does optimization, it may be

desirable to allow the user to hold certain parameters fixed.
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Example: Maximum Likelihood for a Normal model

negloglik <- function(p, data) {

mu <- p[1]

sigma <- p[2]

a <- -0.5 * length(data) * log(2 * pi * sigma^2)

b <- -0.5 * sum((data - mu)^2) / (sigma^2)

-(a + b) ## Return negative LL

}

> normals <- rnorm(100)

> out <- optim(c(1, 2), negloglik, data = normals,

method = "BFGS")

> out[["par"]]

[1] -0.001523056 0.963032909

Note: optim() and nlm() minimize functions by default, so you

usually have to compute the negative log-likelihood.
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Example (cont’d): Using lexical scoping

Write a “constructor” function:

make.negloglik <- function(data, fixed=c(FALSE, FALSE)) {

op <- fixed

function(p) {

op[!fixed] <- p

mu <- op[1]

sigma <- op[2]

a <- -0.5 * length(data) * log(2*pi*sigma^2)

b <- -0.5 * sum((data - mu)^2) / (sigma^2)

-(a + b)

}

}
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Example (cont’d): Construct the likelihood function

> set.seed(1); normals <- rnorm(100, 1, 2)

> nLL <- make.negloglik(normals)

> nLL

function(p) {

op[!fixed] <- p

mu <- op[1]

sigma <- op[2]

a <- -0.5 * length(data) * log(2 * pi * sigma^2)

b <- -0.5 * sum((data - mu)^2) / (sigma^2)

-(a + b)

}

<environment: 0x8f78ccc>

> ls(environment(nLL))

[1] "data" "fixed" "op"
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Example (cont’d): Estimate both parameters

> optim(c(mu=0,sigma=1), nLL, method="BFGS")[["par"]]

mu sigma

1.217758 1.787531

> c(mean(normals), sd(normals))

[1] 1.217775 1.796399
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Example (cont’d): Hold parameters fixed

Fixing σ = 2:

> nLL <- make.negloglik(normals, fixed=c(FALSE, 2))

> optimize(nLL, c(-1, 3))[["minimum"]]

[1] 1.217775

> mean(normals)

[1] 1.217775
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Example (cont’d)

Fixing µ = 1:

> nLL <- make.negloglik(normals, fixed=c(1, FALSE))

> optimize(nLL, c(1e-6, 5))[["minimum"]]

[1] 1.800620

> sd(normals)

[1] 1.796399
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Example (cont’d): Plot the likelihood function

nLL <- make.negloglik(normals, fixed=c(1, FALSE))

x <- seq(1.7, 1.9, len = 100)

y <- sapply(x, nLL) ## nLL is not vectorized!

plot(x, y, type = "l",

xlab= expression(sigma),

ylab = "Neg. LL",

main = expression(paste(mu, " = 1")))
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Lexical Scoping Summary

• Objective functions can be “built” which contain all of the

necessary data and other things.

• No need to carry around long argument lists – useful for

interactive/exploratory work.

• Code can be simplified/cleaned up.
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Use R!

Tell your friends!
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