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Distributions and Applications

GammaMixture: Bimodality,
Inflexions and L-Moments

S. E. AHMED1, M. N. GORIA2, AND A. HUSSEIN1

1Department of Mathematics and Statistics, University of Windsor,
Windsor, Ontario, Canada
2Department of Computer and Management Sciences,
University of Trento, Trento, Italy

We study some characteristics of the mixture of two gamma distributions.
Specifically, we characterize regions of the parameter space where the mixture
density is bimodal and/or has four inflexion points and further, we provide formulae
for the L-moments of such mixtures. These characteristics may be useful in density
and parameter estimation methods, as well as in analytical and graphical modality
testing procedures. With a simple example, we illustrate the estimation of the
parameters of the gamma mixture by the method of L-moments. Such estimators are
in some circumstances more efficient than those based on the conventional method
of moments.

Keywords Bimodal; Gamma mixture; L-moments; Moments; Probability
weighted moments.

Mathematics Subject Classification Primary 62E10, 62F10; Secondary 62G30.

1. Introduction

The history of mixture dates back to Karl Pearson, more than a century ago.
However, its use as an effective tool for modeling the real life data is quite recent
(Crawford et al., 1992; McLachlan and Peel, 2000). Most of the attention in the
literature has been focused on the analysis and applications of normal mixtures.
Mixture of other distributions such as gamma and others, though relevant to
modeling real data, has received relatively insignificant treatment in the literature.

Besides many other areas, the gamma mixtures have been applied in cure rate
models (Peng et al., 2001), in pattern recognition problems (Webb, 2000), and in
economics (Sternberg, 1994).
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8 1148 Ahmed et al.

Characteristics of a mixture density such as regions of bimodality, inflexion
points, and moments provide necessary tools for many density and parameter
estimation methods. These characteristics of the mixture are useful also in graphical
and analytical modality testing procedures (Roeder, 1994). Therefore, it is important
to study such characteristics of mixture distributions in detail.

In the case of two-component normal mixtures, Eisenberger (1969) and most
extensively Robertson and Fryer (1969) studied the regions of bimodality and
inflexion points of the parametric space associated with the normal mixture. Our
first objective in this article is similar to that of Robertson and Fryer (1969),
although the analysis is more complicated due to the presence of more parameters
than in the normal case. In fact, we shall specify the regions where the density of the
gamma mixture is bimodal and where it has four inflexion points for a set of four
parameters. Note that if the density is bimodal then it may have up to four inflexion
points. Our aim in this article is to characterize bimodal gamma mixtures which
necessarily have four inflection points. On the other hand, the density may have
four inflexion points and not be bimodal. However, in this latter case, apart from
the x-axis, there will a tangent touching the density at two points, a characteristic
known as bitangentiality (Robertson and Fryer, 1969). Thus, the difference between
region of four inflexion points and that of bimodality is the region of bitangentiality.

The second objective of this article is to provide formulae for the L-moments
of the gamma mixture.

Throughout the article

g�x� �1� �1� �2� �2� = pf�x� �1� �1�+ �1− p�f�x� �2� �2� (1)

is the density of two component gamma mixtures, where 0 < p < 1 is the mixing
proportion and for i = 1� 2,

f�x� �i� �i� =
[
�
�i
i ���i�

]−1
x��i−1� exp−�x/�i� x ≥ 0� �i ≥ 0� �i ≥ 0

is the pdf of gamma random variable with scale �i and shape �i.
The rest of the article is organized as follows: in Sec. 2 we identify regions of the

parameter space corresponding to bimodality. In Sec. 3 we shall identify regions of
the same space where the mixture density has four inflexions. In Sec. 4 we calculate
the first four L-moments of the gamma mixture in (1).

2. Bimodality

In this section, we shall identify regions of parameter space where the density in
(1) is bimodal. Since modality of g is unaffected by scale changes, without loss
of generality, we shall consider the mixture density g1�x� 1� �1� �� �2�, rescaled with
respect to the larger scale parameter so that � = �2/�1 ≤ 1, and therefore, we shall
focus only on values of � in �0� 1	.

Now if g1 is bimodal then between its two modes there is a minimum at which
g′1�x� = 0 and g′′1 > 0. In the light of (1), g′1�x� = 0 reduces to

−��1− p�/p	f�x� �� �2�/f�x� 1� �1� = ��1 − 1− x	/��2 − 1− x/�	�

which is meaningful provided that �1 > 1� �2 > 1, and either 
1 < x < 
2� or 
2� <
x < 
1� where 
i = �i − 1. Therefore, we need to treat the two cases 
1 < �
2 and
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8 Gamma Mixture: Bimodality, Inflexions and L-Moments 1149

�
2 < 
1 separately in combination with values of �. Also, after eliminating p, the
system g′1�x� = 0 and g′′1 > 0 becomes

h�x� = �x/�− 
2�
[
�x − 
1�

2 − 
1�
]− �x − 
1�

[
�x/�− 
2�

2 − 
2
]
< 0� (2)

the right side of which is a cubic equation in x.

2.1. Case I (�1 < ��2)

Case � < 1. Since h�
1� = 
1�
2�− 
1�/� > 0 and h�
2�� = 
2�
2�− 
1� > 0�
for g1 to be bimodal the cubic equation, h�x�, in (2) must have two and hence three
distinct real roots.

On dividing h�x� throughout by �1− �� and letting

y = x − [

2�

2 + 
1�− 2
2�− 
1	�3�1− ��
]−1

�

(2) is equivalent to

h1�y� = y3 + py + q > 0� h1�y� = −h�y��

The roots yi� i = 1� 2� 3 of h1�x� are real and distinct if and only if the discriminant
function is positive, i.e.,

D = −108
(
p3/27+ q2/4

)
> 0�

for details see Kurosh (1988).
By cumbersome but straightforward computations, we find that D > 0 is

equivalent to

h2�
1� �� d� = 27
21�1− ��2�+ 2
1d�2− ���9��1− ��+ d�2�2 + �− 1�	

− 4d�1− ���2 − �d2��2 + 8�− 8�+ 2d3��2 + 2�− 2�− �d4 < 0� (3)

where d = �
2�− 
1� > 0� Note that Eq. (3) is quartic in d, cubic in �, and quadratic
in 
1. It is therefore convenient to work with 
1� As a function of 
1� h2 is negative
between its two real roots provided

16d�3��1− ��+ d�1− �+ �2�3 > 0�

which holds true for all values of � and d. The two roots of h2 in (3) are

a = −�2− ��d�9�1− ���+d�1+ ���2�2 + �− 1�	− 2d1/2�3��1− ��+d�1− �+ �2��3/2

27�1− ��2

and

b = −�2− ��d�9�1− ���+ d�2�2 + �− 1�	+ 2d1/2�9��1− ��+ d�1− �+ �2��3/2

27�1− ��2�
�

Note that b is positive provided d �= �, whereas the first root is always negative.
The location of the minimum, m, of h2 in (3) clearly depends on � and d. In fact, for
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8 1150 Ahmed et al.

� < �d + �05�/10 this minimum is positive and otherwise negative. The bound on �
increases with d till it reaches around �45. From this it follows that the admissible
region of 
1 is �0� b� if � > �d + �05�/10. Otherwise, the admissible region is �m� b��
where

m = −�2− ��d�9�1− ���+ d�2�2 + �− 1�	
27��1− ��2

�

Furthermore, since

h′�
1� = d��− d� > 0� h′�
1 + d� = �d�d + 1� > 0�

if 
1 lies in the above intervals, then h has two roots, say x1 < x2, in the admissible
range, where it is negative. On the other hand, it is not hard to show that the relation
between p and x is one to one in the above range. Consequently, using these roots
together with g′1 = 0, we can find intervals �p1� p2�, (henceforth called P-intervals)
containing the values of the mixing proportion p for which the gamma mixture
density is bimodal. Explicitly, pi is such that

pi

1− pi

= x
�
2−
1�
i e

(
��−1�xi

�

)
��
1 + 1���
2 − xi	�

−�
2+2�

��
2 + 1��xi − 
1�
� (4)

In summary, if 
1 lies in the above admissible region (i.e., either �0� b� or �m� b�
defined above), d = �
2 − 
1 > 0 and � < 1, and moreover, x1 < x2 are the roots of
h in (2) corresponding to these parameter regions, then the mixture g is bimodal if
and only if p is in the P-interval �p1� p2� with endpoints obtained by using x1� x2 in
(4). Outside these restrictions, however, g is unimodal and cannot have minimum.

Case � = 1. For � = 1, if d = 
2 − 
1 > 1,
√

2 >

√

1 + 1 and x1 < x2 are the

roots of

h�x� = �
2 − 
1�
[
x2 + x�
2 + 
1 − 1�+ 
1
2

]
(5)

corresponding to these parameter regions, then g is bimodal if and only if p is in
the P-interval �p1� p2� obtained from (4) using the roots x1� x2.

To see this, note that for � = 1 the function h�x� in (2) reduces to (5), a
quadratic polynomial. This polynomial has two distinct real roots provided its
discriminant function is positive, i.e., �
1 + 
2 − 1�2 − 4
1
2 > 0� Letting d = 
2 − 
1,
we find that 0 < 
1 < �d − 1�2/4 or equivalently, 0 < 


1/2
1 < �d − 1�/2.

Now if d > 1 then 
2 >
(
1+ 


1/2
1

)2
or equivalently, 
1/22 > 


1/2
1 + 1. Whereas if

d < 1, then 
2 <
(
1− 


1/2
1

)2
� which is not possible. Similar arguments as in the

previous case (� < 1) would again lead to the existence of the P-interval, �p1� p2�.

2.2. Case II (��2 < �1)

Case � < 1. Note that in this case 
2 can be larger than 
1� Here the inequality
(2) modifies to

h�x� = �1− ��x3 + �
2�
2 − 2
2�+ 2
1�− 
1�x

2

+ �x
(
�
22 − 2
1
2�− 
2�+ 2
1
2 + 
1 − 
21

)− 
1
2�
2 − 
1��
2 < 0� (6)
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8 Gamma Mixture: Bimodality, Inflexions and L-Moments 1151

and again, h�
2�� = 
2�
1 − 
2�� > 0, h�
1� = 
1�
1 − 
2��/� > 0. Consequently, for
g1 to be bimodal, the cubic equation in (6) must have two, hence three distinct
real roots. Next, as in the previous section, we reduce the function h in (6) to the
equivalent one

h1�y� = y3 + py + q < 0

by putting

y = x − �3�1− ���−1�
2�
2 − 2
2�+ 2
1�− 
1��

Now h1 has real roots provided its discriminant function is positive, which is the
case if

h2�
1� �� d� = 27��1− ��2
21 + 2
1�2− ��d�−9��1− ��+ d�2�2 + �− 1��

+ 4�2�1− ��d + d2��8− 8�− �2�+ d3�4− 4�− 2�2�− �d4� < 0� (7)

where d = 
1 − �
2� As in the previous case, h2 in (7) is quadratic function in 
1 and
has two real roots provided its discriminant is positive, i.e.,

16d�−3��1− ��+ d�1− �+ �2�3 > 0�

or equivalently, if

d > 3��1− ���1− �+ �2� = d����

Thus, for these values of d, the two roots of the above quadratic polynomial, h2, in

1 are

a1 =
�1− 2��d�9��1− ��+ d�1+ ���2− ��	− 2d1/2

1 �3− 3�+ d − d�+ d�2�3/2

27�1− ��2

and

b1 =
�1− 2��d�9��1− ��+ d�1+ ���2− ��	− 2d1/2�3− 3�+ d − d�+ d�2�3/2

27�1− ��2
�

The root b1 is positive whereas a1 and the minimum, m1, of h2 in (7) can be
negative. In fact, if we let d = d���+ d1 then as d1 increases the range where these
quantities are positive shrinks for decreasing �� More precisely, a1 > 0 for 0 < d1 < 1
provided � < �77 whereas for 1 ≤ d1 < 10, a1 is positive if � < �15� The minimum
m1 is positive for d1 in the above intervals with � bounded above by �84 and �55,
respectively, and thereafter it remains positive for all values of d1. Thus, for large
values of d1 we can take �m1� b1� as the admissible range of 
1 provided � < �55;
otherwise, the admissible range is �0� b1�. Also note that for moderate values of d1

we can still use the same interval provided a1 is negative and � > �55. However, for
small values of � we shall use �a1� b1� provided a1 is positive.

Furthermore, since

h′�
1 − d� = d�1− d�/� < 0� h′�
1� = d��+ d�/�2 > 0�
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the cubic function, h, has two roots in the admissible range of 
1 and between
these two roots h is negative. Assuming these roots are x1 < x2, the corresponding
P-interval = �p1� p2� containing the mixing proportions for which the mixture is
bimodal are obtained from (4) by using these roots.

In summary, if � < 1 and d = 
1 − �
2 > d��� = 3��1− ���1− �+ �2� > 0, and

1 lies in the above admissible ranges, and moreover, x1 < x2 are the roots of h in
(2) corresponding to these parameter regions, then g is bimodal if and only if p

lies inside a P-interval whose endpoints, p1� p2, are obtained from (4) using these
two roots. Outside these constraints, g cannot have a minimum, which implies g is
unimodal.

The special case 
1 = 
2 = 
 simplifies bimodality regions quite a lot. In fact, in
this case the cubic function h�x� in (2) has one zero root and its other roots are
obtained from

x2 − 
�1+ ��x + 
�1+ 
�� = 0� (8)

The quadratic equation in (8) has real roots provided 
 > 4���− 1�−2� which in turn
identifies the values of 
 for which the mixture is bimodal.

Again, in this case, both roots are within an admissible range, and hence, using
these roots in (4), we can determine the end-points of the P-interval containing the
mixing proportion p for which the mixture is bimodal.

Figure 1. P-intervals (intervals of mixing proportion, p) corresponding to bimodal mixture,
depicted as functions of �1 − 1 = �2 − 1 = 
 for several values of � = �2/�1. In each curve,
the upper and lower arms represent the upper and lower end-points, respectively, of the
intervals containing mixing proportions for which (1) is bimodal.
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8 Gamma Mixture: Bimodality, Inflexions and L-Moments 1153

This special case is depicted in Figure 1 showing the P-interval as a function
of 
 for several values of � < 1. For example, for � = �2, the admissible range is

 > 1�25 which marks the beginning of the first curve in the figure.

Case � = 1. Here the function h�x� in (2) becomes quadratic and the
inequality (2) reduces to

h�x� = �x2 + x�1− 
2 − 
1�+ 
1
2	 < 0� (9)

The left-hand-side of �9� has two real roots provided that �
1 + 
2 − 1�2 − 4
1
2 > 0,
or equivalently, 2
1/21 < �1+ d�� d = 
1 − 
2, that is, provided that either 


1/2
1 >



1/2
2 + 1� or 


1/2
2 + 


1/2
2 < 1 for 
1 < 1. Both roots, say x1 < x2, of the quadratic

polynomial in (2) or, equivalently, in (9) correspond to admissible parameter values.
Therefore, for � = 1 and 
1 and 
2 satisfying either 2
1/21 < 
1 − 
2 + 1 or 


1/2
2 +



1/2
2 < 1, g is bimodal if and only if p is in the interval �p1� p2�, where the end-points
are obtained from (4) using the roots x1� x2.

3. Inflexion Points

Our objective in this section is to identify the region of the parameter space
where the mixture of gamma densities in (1) or equivalently g1�x� 1� �1� �� �2� has
four inflexion points. Note that, whether the mixture density g1 has two or four
inflexion points is determined by its four parameters p� �1� �2� �, as compared to
normal mixture case which has only three parameters, thus complicating the analysis
further.

Now as we vary parameter values, g1 goes from having two to having four
inflexion points and as g1 passes from one state to the other, it must pass through a
state where not only the second but also the third derivative is zero, i.e., g′′1 = g′′′1 = 0.
Eliminating p in this system, we end up with a fifth degree polynomial equation

h�x� 
1� 
2� �� � = −��x/�− 
2�
2 − 
2	 ��x − 
1�

3 − 3
1�x − 
1�− 2
1�	

+ ��x − 
1�
2 − 
1	 ��x/��3 − 3
2�x/�− 
2�− 2
2	 = 0� (10)

Admissible roots of (10) are those leading to values of p satisfying 0 < p < 1.
Consequently, from g′′ = 0 and 0 < p < 1 we find that an admissible real root must
satisfy the condition

C � ��x − 
1�
2 − 
1	/��x/�− 
2�

2 − 
2	 < 0�

Real roots satisfying this condition shall be called C-roots. The condition C

implies that the admissible region for the C-roots is given by two disjoint intervals
depending on the values of �� 
1� 
2� Here we list all possible cases of admissible
regions, I1 and I2:

a) if ��
2�
1/2 > 


1/2
1 + 1� then

I1 =
(

1 − 


1/2
1 � 
1 + 


1/2
1

)
� I2 =

(
�
(

2 − 


1/2
2

)
� �

(

2 + 


1/2
2

))
�
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b) if 
1/21 < ��
2�
1/2 < 


1/2
1 + 1� then

I1 =
(

1 − 


1/2
1 � �

(

2 − 


1/2
2

))
� I2 =

(

1 + 


1/2
1

)
� �

(

2 + 


1/2
2

)
�

c) if �
2 < 
1� then

I1 =
(
�
(

2 − 


1/2
2

)
� 
1 − 


1/2
1

)
� I2 =

(
�
(

2 + 


1/2
2

)
� 
1 + 


1/2
1

)
�

d) if ��
2�
1/2 < �
1�

1/2 + 1� then

I1 =
(
�
(

2 − 


1/2
2

)
� 
1 − 


1/2
1

)
� I2 =

(
��
2 + 


1/2
2

)
� 
1 + 


1/2
1

)
�

e) if ��
2�
1/2 < 


1/2
1 − 1� then

I2 =
(
�
(

2 − 


1/2
2

)
� �

(

2 + 


1/2
2

))
� I2 =

(

1 − 


1/2
1

)
�
(

1 + 


1/2
1

)
�

Next we show that the number of roots in the admissible region is even. Since
the proof in the other cases is very similar, we illustrate only case (a). It is
straightforward to see that

h
(

1 − 


1/2
1

) = 2
1
(


1/2
1 − 1

)[

1 − 


1/2
1 − �

(

2 − 


1/2
2

)] [

1 − 


1/2
1 − �

(

2 + 


1/2
2

)]
> 0�

h
(

1 + 


1/2
1

) = −2
1
(


1/2
1 − 1

)[

1 + 


1/2
1 − �

(

2 − 


1/2
2

)] [

1 + 


1/2
1 − �

(

2 + 


1/2
2

)]
> 0�

h
(
�
(

2 − 


1/2
2

)) = −2
2
(


1/2
2 − 1

)[
�
(

2 − 


1/2
2

)− (

1 + 


1/2
1

)]
× [

�
(

2 − 


1/2
2

)− (

1 + 


1/2
1

)]
< 0

and

h
(
�
(

2 − 


1/2
2

)) = 2
2
(


1/2
2 + 1

)[
�
(

2 + 


1/2
2

)− (

1 + 


1/2
1

)] [
�
(

2 + 


1/2
2

)− (

1 − 


1/2
1

)]
> 0�

Consequently, h has odd number of zeros in I1 and also in I2, i.e., an overall even
number of roots.

3.1. Transition From Two to Four Inflexion Points

The case 
1 = 
2 = 
 or equivalently, d = 
2 − 
1 = 0, is simple and helps find a cut-
off-point, �0, in the �-space above and below which there are different patterns of
C-roots. Here, we argue that since g1 is nondegenerate at p = 0 and p = 1 and has
two inflexion points, by continuity it will continue to have two inflexion points. That
is, there is no turning point where the number of inflexions change from 2 to 4.
Under the condition 
2 − 
1 = d = 0, the polynomial in (10) has one root at zero
and the other roots are obtained from

h�x� 
1� 
2� �� � = x4 − 2
�1+ ��x3 + 
�
�2 − �2 + 4
�+ 2�+ 
− 1�x2

− 2
��
2 − 1��1+ ��x + �
��2�
2 − 1� = 0 (11)

The desired cut-off point is the minimum �, �0 = �0�
�, such that the above
polynomial has no real roots in the admissible region. This can be determined by
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studying the discriminant function of the above fourth degree polynomial discussed
in Kurosh (1988). However, it is more handy, though laborious, to do it numerically
a software package. Thus for fixed value of 
 we search minimum value of �
such that (11) has only zero root. It turns out that the numerical values of �0
found can be very accurately approximated by the regression ��
� = a+ b log�
�,
where intercept and angular coefficients are given by �0�267949� 0�146597� for
1≤ 
≤ 10� �0�322616� 0�1222855� for 10 ≤ 
 ≤ 30, �0�444892� 0�0869041� for 30 ≤

 ≤ 100 and �0�60116� 0�0529709� for 100 ≤ 
 ≤ 300� The difference between exact
and interpolated values lies in the interval �−0�0055� 0�0055�.

Figure 2 shows the range of � for which sensible P-intervals (interval of values
of p corresponding to density with four inflexions) exist for various values of 
1 =

2 = 
. It is clear that �0�
� are the foremost peeks of the curves. For example,
for the curve labeled by 
 = 1�5, �0�1�5� = 0�327389 is the cut-off point represented
by the far most right point on the curve. For instance, note that P-interval for
bimodality in Figure 1 for � = �5 and 
 = 15 say, is contained in the P-interval of
four inflexions for the same values of parameters in Figure 2.

3.2. Region of Four Inflexion Points

Depending on the cut-off point, �0 = a+ b log�
1�, established in the previous
subsection, it turns out that we have two distinct patterns of C-roots according
to � > �0 or � < �0. For each of these cases, we shall describe the C-roots in
detail for d = 
2 − 
1 > 0 and briefly mention the necessary modifications for d< 0.

Figure 2. Intervals of p, P-intervals, corresponding to gamma mixtures density with four
inflexions, as functions of � and 
1 = 
2 = 
. The upper and the lower arms of each curve
represent the upper and the lower end-points, respectively, of the P-intervals.
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The procedure of finding the regions of four inflexion points is as follows. For
fixed 
1, we identify whether � > �0 or �<�0. Secondly, for the given �� 
1� 
2 we
find C-roots, xi, by solving numerically the 5th degree polynomial equation in
(10) with respect to x. Finally, we find the mixing proportions pi corresponding
to these C-roots from the condition g′′1 = 0 and construct the P-interval = �p1� p2�

containing values of p for which the mixture density has four inflexion points.

Case � > �0. For fixed value of 
1, we calculate � from � = �01+ a+
b log�
1� > �0 and then by increasing d = 
2 − 
1 > 0 from low to quite high values
we observe the pattern of C-roots. As a result we find, numerically, constants d1 <

d2 < d3 such that

1. for d < d1 the density is unimodal (i.e., there are no valid P-intervals);
2. for d1 ≤ d < d2 there are two C-roots in the first interval, leading to one P

interval;
3. for d2 ≤ d < d3 there are two C-roots in each interval, giving rise to two P

intervals;
4. for d ≥ d3 there is one root in each interval leading to one P interval.

For example, for 
1 = 1�5 we have d1 = 4�092, d2 = 9�797, d3 = 9�964, for 
1 = 10�
we have d1 = 12�82, d2 = 15�9739, d3 = 16�54 and for 
1 = 9 we have d1 = 10�748,
d2 = 13�978, d3 = 14�488.

Figure 3 shows the P-intervals of four inflexions as functions of d > 0 for

1 = 1�5� 5� 9. These curves show clearly the above-mentioned values, di� which form

Figure 3. Intervals of p, P-intervals, corresponding to gamma mixture density with four
inflexions depicted as functions of d = 
2 − 
1 for fixed values of 
1. The upper and lower
arms of each curve represent the upper and lower end-points, respectively, of the P-intervals.
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8 Gamma Mixture: Bimodality, Inflexions and L-Moments 1157

the cut-off points for the existence of none, one, two, and again one P-intervals,
respectively.

For 
1 > 
2, the above (1)–(4) will still hold with the only change that the two
C-roots in (2) are in the second interval, instead of the first interval.

Case � < �0. Proceeding as before with

� = −�01+ a+ b log 
1

and provided that

��
2�
1/2 < 


1/2
1 − 1�

we have constants di� i = 1� 2 � � � � 6� in an increasing order such that

1. for d ≤ d1 there is one root in each interval leading to one P-interval;
2. for d1 < d ≤ d2 there are two C-roots in each interval leading to two P-interval;
3. for d2 < d ≤ d3, there are two roots in the second interval leading to one

P-interval;
4. for d3 < d ≤ d4, the density is unimodal;
5. for d4 < d ≤ d5, there are two roots in the smaller interval, hence one P-interval;
6. for d5 < d < d6, there are two roots in each interval, hence two P-interval;
7. for d ≥ d6 there is one root in each interval, hence one P-interval.

In case

��
2�
1/2 > 


1/2
1 − 1�

there are only four cases of admissible regions and, consequently, only 3) to 7) hold.
For example with 
1 = 3, we find

d3 = 3�208� d4 = 10�1� d5 = 18�4� d6 = 18�618� d7 = 18�68�

whereas if

��
2�
1/2 < 


1/2
1 − 1�

then, for example, with 
1 = 10 we find

d1 = 1�616� d2 = 2�05� d3 = 4�67� d4 = 18�64� d5 = 24�36� d6 = 24�807�

For 
1 > 
2 only e) or d) and e) of the disjoint intervals containing C-roots
described above will be valid. In the latter case, i.e, 
2 ≥ 5, we have only one C-root
in each interval leading to one P-interval. In the former case, we have two situations;
if the upper limit of the lower interval (say I1) is not far away from the lower limit of
the upper interval such as 3 ≤ 
2 < 5, then we first have two C-roots in each interval
followed by one C-root in each interval, leading, respectively, to two P-intervals
followed by one P-interval.

Finally, for 1 < 
2 < 3, when the lower limit of the upper interval is well below
the upper limit of the lower interval, we have two C-roots in one interval, followed
by the above pattern.
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4. L-Moments of the Gamma Mixture

The L-moments of a random variable, X, are linear combinations of probability
weighted moments (PWMs), which in turn are expectations of certain functions (e.g.,
i =

∫
xF ifdx) of the random variable. The PWMs, first introduced by Greenwood

et al. (1979), and hence the L-moments based on them, can be defined for any
random variable whose mean exists. The theory of the L-moments was unified
and popularized by Hosking (1990). The L-moments are known to be robust to
outliers and sample variability. Therefore, L-moments are superior to the method
of conventional moments and sometimes even to the likelihood-based methods
in describing properties of a distribution such as skewness and kurtosis and in
estimating and testing hypotheses about distribution parameters.

In this section, we shall provide formulae for the L-moments of the mixture
of two gamma distributions as in (1). For simplicity we limit our discussion to the
first four of these L-moments and therefore, we consider the rescaled mixture with
�2/�1 = �,

g1�x� 1� �1� �� �2� = pf�x� �1�+ �q/��f�x/�� �2� (12)

with cdf G1�x� 1� �1� �� �2�, where f�x� �i� is the density of standard gamma variable
with cdf F�x� �i� and shape �i and p = 1− q. The L-moments of such gamma
mixtures are linearly related to their PWMs,

i =
∫
xGi

1�x� 1� �1� �� �2�g1�x� 1� �1� �� �2�dx�

therefore, we first compute these PWMs and relate them to the component PWMs
ij =

∫
xF i�x� �j�f�x� �j�dx, which are available from Hosking (1990). Obviously,

0 = p�1 + q��2�

1 = p211 + q2�12 + pq��1I1/�1+����2� �1 + 1�+ ��2I�/�1+����1� �2 + 1�	�

where Ix�a� b� is the normalized beta function Gradshteyn and Ryzhik (1980). For
2� 3 we need the following notations:

Aij��� = E
[
�1− Xij�I �1−Xij ��

1+��1−Xij �

��i� �i + �j + 1���0��/�1+��	�Xij�
]
�

Bij��� = E
[
�1− Xjj�I �1−Xjj ��

1+��1−Xjj �

��i� 2�j + 1���0�1/2	�Xjj�
]
�

Cij��� = E
[
�1− Xij��1− Yij�I �1−Xij ��1−Yij ��

1+��1−Xij ��1−Yij �

��i� 2�i + �j + 1���0��/�1+��	∗�0�1	�Xij� Yij�
]
�

Dij��� = E
[
�1− Xjj��1− Yjj�I �1−Xjj ��1−Yjj ��

1+��1−Xjj ��1−Yjj �

��i� 3�j + 1���0�1/2	∗�0��1−x�/�2−x�	�Xjj� Yjj�
]
�

Eij��� = E
[
�1− Xjj��1− Y 0

ij�I �1−Xjj ��1−Y0ij ��

1+��1−Xjj ��1−Y0ij �

��i� 2�i + 2�j + 1���0�1/2	∗�0�1	�Xjj� Y
0
ij�
]

where, i �= j� i� j = 1� 2, � is an indicator function and Xij� Yij� Y
0
ij are independently

beta random variables with densities, Beta�x� �i� �j�, Beta�y� �i� �i + �j� and
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8 Gamma Mixture: Bimodality, Inflexions and L-Moments 1159

Beta�y0� �i� 2�j�, respectively. Now, after some algebra, we find that

2 = p321 + q3�22 + pq��1 + �2��p�A12���+ qA21�1/��	� (13)

3 = p431 + q4�32 + pq�p2��2�1 + �2�C12���+ q2�2�2 + �1�C21�1/��	

+ 9pq�q2��2D12���+ p2�1D21�1/��	

+ 3p2q2����1 + 2�2�E12���+ ��2 + 2�1�E21�1/��	� (14)

Finally, by definition (Hosking, 1990), the �r + 1�th L-moment is written as

�r+1 =
r∑

i=0

pr�ii

where r = 0� 1� � � � and pr�i = �−1�r−i� r
i ��

r+i
i �. Hence, the first four L-moments are

�1 = 0�

�2 = 21 − 0�

�3 = 62 − 61 + 0�

�4 = 203 − 302 + 121 − 0� (15)

In general, by equating these theoretical L-moments to their sample
counterparts, estimation of the parameters (�1� �2� �� and p ) can be carried out as
one would do in the case of the classical method of moments (Hosking, 1990).

The sample L-moments are obtained by replacing the i in the above
expressions by their sample counterparts

bi =
1
n

n∑
k=i+1

(
k− 1
i

)(
n− 1
i

)−1

Xk�n

where i = 0� 1� 2� � � � and Xk�n is the kth order statistic of the data.
The fifth L-moment is quite complicated and thus omitted here. However, one

can always use the expression

54 = p
4∑

i=0

(
4
i

)
qip4−i

∫ �

0
xF 4−i�x� �1� �1�F

i�x� �1�� �2�f�x� �1� �1�dx

+ q
4∑

i=0

(
4
i

)
qip4−i

∫ �

0
xF 4−i�x� �1� �1�F

i�x� �1�� �2�f�x� �1�� �2�dx

where for the general gamma pdf and cdf, the relation �2/�1 = � has been used.
As in the expression of 3, one can further expand the integrals in terms of beta
densities.

It is also possible to obtain the L-moment estimators by direct numerical
integration using the definition of the PWM, i, given above.

In general, there are no closed-form expressions for the solution of the system of
equations resulting from the L-moments method. However, numerical optimization
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8 1160 Ahmed et al.

methods, implemented in Maple, Mathematica, and similar software, provide
numerical solutions to the problem.

For the sake of completeness, we mention that the conventional noncentral
moments of the gamma mixture in (1) is quite simple and straightforward, since they
are just mixtures of the corresponding moments of the component distributions.
These are considered in John (1970) for the simple case where the two component
distributions have a common and known shape parameter.

Using the mgf of the gamma distribution, the rth noncentral moments of (12)
are

mr = E�xr	 = p
∫ �

0
xrf�x� �1�dx + q/�

∫ �

0
xrf�x/�� �2�dx

= p��1��1 + 1� � � � ��1 + r − 1�	+ q�r��2��2 + 1� � � � ��2 + r − 1�	

which is more general than in John (1970). The conventional central moments of the
mixture can be derived from the mr by using conversion formulae (Papoulis, 1984).

Example. For illustration purposes, we take an example of a mixture of a
completely known gamma distribution and a gamma distribution with unknown
and eventually different scale parameter. Such situation is encountered for instance
in mixed effects linear models (see Lehmann, 1999 for a similar example of normal
mixture). Thus, without loss of generality, consider (12) with �1 = �2 = 1 and �
unknown. In this simple case, the system of equations resulting from equating
0 and 1 to their sample counterparts, b0 and b1, respectively, has the following
explicit solution:

�̂ = b20 − 4�b0 − b1�

4�b0 − b1�− 1
� p̂ = �b0 + 1��4b1 − 3b0�

b20 − 8b0 + 8b1 + 1
� (16)

For this example, the results of a small simulation comparing these estimators to
those generated by the conventional method of moments have shown that L-moment
estimators are more efficient than their conventional moment counterparts for p< �7
and for any value of �. Both types of estimators become inefficient for higher
values of p, i.e., when information about � is carried by a small portion of the
whole sample. However, in this latter case, the conventional method of moments
estimators are less affected in terms of efficiency as compared to the L-moment
estimators. In any case, further detailed investigations of efficiency are needed.
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