
Thanks again for your time and your notes. I will sumarize the story brie�yand show what is bothering me.Important result (btw. how do you write letter d above an arrow?):
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ally varian
e equals (is this OK, sin
e I got quite lost around I (θ)and I1 (θ) in your PDF)
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−1I 
ame to all this after ex
hange with a friend. We were looking in R, howstandard errors are 
omputed and this example shows this. Say we have 1000iid values from gamma distribution with parameters shape a and s
ale θ
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aθΓ (a)
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θ ).Or in terms of parameter rate λ = 1/θ

f (x) =
λa

Γ (a)
x(a−1)e−λx.## Simulate from Gamma(3, 1.8)n <- 1000y <- rgamma(n = n, shape = 3, rate = 1.8)Now we 
an estimate parameters via method of moments sin
e we know E (X) =

a/λ and V ar (X) = a/λ2 and therefore λ = E (X) /V ar (X) and a = E (X)
2
/V ar (X).## Method of moments(rate <- mean(y) / var(y))## [1℄ 1.6314(shape <- mean(y)^2 / var(y))## [1℄ 2.7711 1



What about maximum likelihood estimates? Loglikelihood is
l (a, λ|x) = n × a × log (λ) − n × log (Γ (a)) + (a − 1)

n
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xi.After taking partial derivatives and setting them to 0 we do not get 
losed formequations and numeri
al optimization must be used.In R we 
an use �tdistr fun
tion, whi
h helps in produ
ing the 
all for optimiza-tion via optim fun
tion## Maximum likelihoodlibrary(MASS)(tmp <- fitdistr(x = y, densfun = �gamma�))## shape rate## 2.841056 1.672556##(0.120345) (0.077486)Let us �gure out how standard errors are 
omputed. Using above result
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ted information equals
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.I 
an do this in R with the following 
ode## Take maximum likelihood estimates of parametersa <- tmp$estimate[[1℄℄lambda <- tmp$estimate[[2℄℄## Compute Fishers's expe
ted information about a and λgammaD2 <- (gamma(a) * psigamma(a)^2) + (gamma(a) * psigamma(a, 1))gammaD <- gamma(a) * psigamma(a)I11 <- (gammaD2 * gamma(a) - (gammaD)^2) / gamma(a)^2I12 <- -1 / lambdaI21 <- I12I22 <- a / lambda^2(I <- matrix(
(I11, I12, I21, I22), nrow = 2))## [,1℄ [,2℄##[1,℄ 0.42103 -0.59789##[2,℄ -0.59789 1.01559 2



## Taking inverse of I (a, λ) and square root of diagonal elements yieldsinvI <- solve(I)sqrt(diag(invI))## [1℄ 3.8056 2.4503Hmm, this is not the same as standard errors from �tdistr 
all, but this issqrt(diag(invI)) / sqrt(n)## [1℄ 0.120345 0.077486How, does �tdistr 
ome up with standard errors? It 
alls optim fun
tion andthis fun
tion returns Hessian matrix. As far as I know this is a matrix of se
ondderivatives and therefore equals to Fisher's observed information. For gammaexample Hessian equalstmp$hessian## shape rate##shape 421.03 -597.89##rate -597.89 1015.59Comparing to I (a, λ) Hessian seems to be I (a, λ)n. Square root of Hessianinverse and taking only diagonal elements yieldsdiag(sqrt(solve(tmp$hessian)))## shape rate##0.120345 0.077486I am a bit lost here? Is this just R stu� or related to expe
ted/observed Fisher'sinformation?

3


