Thanks again for your time and your notes. I will sumarize the story briefly
and show what is bothering me.

Important result (btw. how do you write letter d above an arrow?):
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Asimptotically variance equals (is this OK, since I got quite lost around I (6)
and I (f) in your PDF)
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I came to all this after exchange with a friend. We were looking in R, how

standard errors are computed and this example shows this. Say we have 1000
iid values from gamma distribution with parameters shape a and scale 8
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## Simulate from Gamma(3, 1.8)
n <- 1000
y <- rgamma(n = n, shape = 3, rate = 1.8)

Now we can estimate parameters via method of moments since we know E (X) =

a/Xand Var (X) = a/A? and therefore A = E (X) /Var (X)and a = E (X)* /Var (X).

## Method of moments

(rate <- mean(y) / var(y))
## [1] 1.6314

(shape <- mean(y)~2 / var(y))
## [1] 2.7711



What about maximum likelihood estimates? Loglikelihood is

n
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After taking partial derivatives and setting them to 0 we do not get closed form
equations and numerical optimization must be used.

In R we can use fitdistr function, which helps in producing the call for optimiza-
tion via optim function

## Maximum likelihood

library (MASS)
(tmp <- fitdistr(x = y, densfun = ‘‘gamma’’))
## shape rate

## 2.841056 1.672556
##(0.120345) (0.077486)

Let us figure out how standard errors are computed. Using above result
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Fisher’s expected information equals
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I can do this in R with the following code

## Take maximum likelihood estimates of parameters

a <- tmp$estimate[[1]]

lambda <- tmp$estimate[[2]]

## Compute Fishers’s expected information about a and A
gammaD2 <- (gamma(a) * psigamma(a)~2) + (gamma(a) * psigamma(a, 1))
gammaD <- gamma(a) * psigamma(a)

I11 <- (gammaD2 * gamma(a) - (gammaD)~2) / gamma(a)~2
I12 <- -1 / lambda

I21 <- I12

122 <- a / lambda~2

(I <- matrix(c(I11, I12, I21, I22), nrow = 2))

##t [,1] [,2]

##[1,] 0.42103 -0.59789

##[2,] -0.59789 1.01559



## Taking inverse of [ (a,A) and square root of diagonal elements yields
invI <- solve(I)

sqrt(diag(invI))

## [1] 3.8056 2.4503

Hmm, this is not the same as standard errors from fitdistr call, but this is

sqrt(diag(invI)) / sqrt(n)
## [1] 0.120345 0.077486

How, does fitdistr come up with standard errors? It calls optim function and
this function returns Hessian matrix. As far as I know this is a matrix of second
derivatives and therefore equals to Fisher’s observed information. For gamma
example Hessian equals

tmp$hessian

## shape rate
##shape 421.03 -597.89
##rate -597.89 1015.59

Comparing to I (a, ) Hessian seems to be I (a,\)n. Square root of Hessian
inverse and taking only diagonal elements yields

diag(sqrt(solve(tmp$hessian)))
## shape rate
##0.120345 0.077486

I am a bit lost here? Is this just R stuff or related to expected/observed Fisher’s
information?



