Thanks again for your time and your notes. I will sumarize the story briefly
and show what is bothering me.

Important result (btw. how do you write letter d above an arrow?):
\/ﬁ (é - 90) — N (0,[(90)71)

Asimptotically variance equals (is this OK, since I got quite lost around I (6)
and I (f) in your PDF)

Var (\/ﬁ (é—e)) 1)~
Var ((é - 9)) = Var (é) =nl(0)"
= n (n[l 9)71)
= Lo
I came to all this after exchange with a friend. We were looking in R, how

standard errors are computed and this example shows this. Say we have 1000
iid values from gamma distribution with parameters shape a and scale 8

1
a’T (a)

x(afl)e_(%).

flx) =

Or in terms of parameter rate A = 1/

_ A e
f(a:)—F(a):E DAz,

Simulate from Gamma(3, 1.8)
n <- 1000
y <- rgamma(n = n, shape = 3, rate = 1.8)

Now we can estimate parameters via method of moments since we know E (X) =

a/Xand Var (X) = a/A? and therefore A = E (X) /Var (X)and a = E (X)* /Var (X).

Method of moments

(rate <- mean(y) / var(y))
[1] 1.6314

(shape <- mean(y)~2 / var(y))
[1] 2.7711

What about maximum likelihood estimates? Loglikelihood is

n

I(a,\|x) =n xax log(/\)—nxlog(F(a))—I—(a—l)Zlog(xi)—/\in.

i=1

After taking partial derivatives and setting them to 0 we do not get closed form
equations and numerical optimization must be used.

In R we can use fitdistr function, which helps in producing the call for optimiza-
tion via optim function

Maximum likelihood

library (MASS)
(tmp <- fitdistr(x = y, densfun = ‘‘gamma’’))
shape rate

2.841056 1.672556
##(0.120345) (0.077486)

Let us figure out how standard errors are computed. Using above result
\/ﬁ((a X) _ (a,)\)) ~N ((0,0),I(a,)\)_l)

Fisher’s expected information equals

'’ (@) - (T @)’
I(a,)) = < - F2(a§) —1/A) .
—1/A a/\?

I can do this in R with the following code

Take maximum likelihood estimates of parameters

a <- tmp$estimate[[1]]

lambda <- tmp$estimate[[2]]

Compute Fishers’s expected information about a and A
gammaD2 <- (gamma(a) * psigamma(a)~2) + (gamma(a) * psigamma(a, 1))
gammaD <- gamma(a) * psigamma(a)

I11 <- (gammaD2 * gamma(a) - (gammaD)~2) / gamma(a)~2
I12 <- -1 / lambda

I21 <- I12

122 <- a / lambda~2

(I <- matrix(c(I11, I12, I21, I22), nrow = 2))

##t [,1] [,2]

##[1,] 0.42103 -0.59789

##[2,] -0.59789 1.01559

Taking inverse of [(a,A) and square root of diagonal elements yields
invI <- solve(I)

sqrt(diag(invI))

[1] 3.8056 2.4503

Hmm, this is not the same as standard errors from fitdistr call, but this is

sqrt(diag(invI)) / sqrt(n)
[1] 0.120345 0.077486

How, does fitdistr come up with standard errors? It calls optim function and
this function returns Hessian matrix. As far as I know this is a matrix of second
derivatives and therefore equals to Fisher’s observed information. For gamma
example Hessian equals

tmp$hessian

shape rate
##shape 421.03 -597.89
##rate -597.89 1015.59

Comparing to I (a,) Hessian seems to be I (a,\)n. Square root of Hessian
inverse and taking only diagonal elements yields

diag(sqrt(solve(tmp$hessian)))
shape rate
##0.120345 0.077486

I am a bit lost here? Is this just R stuff or related to expected/observed Fisher’s
information?

