[R] DPLYR Multiple Mutate Statements On Same DataFrame
Rui Barradas
ru|pb@rr@d@@ @end|ng |rom @@po@pt
Fri Oct 18 09:55:56 CEST 2024
Às 08:27 de 18/10/2024, Rui Barradas escreveu:
> Às 22:50 de 17/10/2024, Sparks, John escreveu:
>> Hi R Helpers,
>>
>> I have been looking for an example of how to execute different dplyr
>> mutate statements on the same dataframe in a single step. I show how
>> to do what I want to do by going from df0 to df1 to df2 to df3 by
>> applying a mutate statement to each dataframe in sequence, but I would
>> like to know if there is a way to execute this in a single step; so
>> simply go from df0 to df1 while executing all the transformations.
>> See example below.
>>
>> Guidance would be appreciated.
>> --John J. Sparks, Ph.D.
>>
>> library(dplyr)
>> df0<-structure(list(SeqNum = c(1L, 2L, 3L, 4L, 5L, 6L, 8L, 9L, 10L,
>> 11L, 12L, 13L, 14L, 15L, 16L, 18L, 19L, 21L, 22L, 23L), MOSTYP = c(37L,
>> 41L, 41L, 13L, 3L, 27L, 37L, 37L, 15L, 14L, 13L, 37L, 4L, 27L,
>> 37L, 26L, 17L, 37L, 37L, 17L), MGEMOM = c(1L, 1L, 1L, 1L, 1L,
>> 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L),
>> MGODRK = c(3L, 2L, 2L, 3L, 4L, 2L, 2L, 2L, 3L, 4L, 3L, 2L,
>> 3L, 1L, 2L, 3L, 4L, 4L, 3L, 3L), MOSHOO = c(7L, 7L, 7L, 2L,
>> 9L, 4L, 7L, 7L, 2L, 2L, 2L, 7L, 9L, 4L, 7L, 4L, 2L, 7L, 7L,
>> 2L), MRELGE = c(0L, 1L, 0L, 2L, 1L, 0L, 0L, 0L, 3L, 1L, 1L,
>> 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 1L), MSKB2 = c(5L, 4L, 4L,
>> 3L, 4L, 5L, 7L, 1L, 5L, 4L, 3L, 4L, 5L, 6L, 7L, 5L, 4L, 6L,
>> 4L, 7L), MFWEKI = c(1L, 1L, 2L, 2L, 1L, 0L, 0L, 3L, 0L, 1L,
>> 2L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L), MAANTH = c(3L, 4L,
>> 4L, 4L, 4L, 5L, 2L, 6L, 2L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 3L,
>> 3L, 3L, 2L), MHHUUR = c(2L, 2L, 4L, 2L, 2L, 3L, 0L, 3L, 2L,
>> 2L, 2L, 3L, 1L, 6L, 0L, 2L, 2L, 0L, 2L, 2L), MSKA = c(1L,
>> 0L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, 0L, 2L, 3L, 1L, 5L, 0L, 0L,
>> 1L, 0L, 0L, 1L), MAUT2 = c(2L, 4L, 4L, 3L, 4L, 5L, 5L, 3L,
>> 2L, 3L, 3L, 4L, 4L, 3L, 5L, 2L, 3L, 3L, 2L, 3L), MFALLE = c(1L,
>> 0L, 0L, 3L, 5L, 0L, 0L, 0L, 0L, 4L, 1L, 1L, 2L, 2L, 0L, 2L,
>> 5L, 0L, 0L, 3L), MGEMLE = c(1L, 0L, 0L, 0L, 4L, 0L, 0L, 0L,
>> 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 3L, 2L, 0L), MAUT1 = c(2L,
>> 5L, 7L, 3L, 0L, 4L, 2L, 1L, 3L, 9L, 5L, 3L, 2L, 4L, 2L, 1L,
>> 3L, 0L, 4L, 2L), MINKGE = c(2L, 4L, 2L, 2L, 0L, 2L, 2L, 1L,
>> 3L, 0L, 1L, 4L, 2L, 2L, 2L, 5L, 1L, 0L, 3L, 1L), MOPLHO = c(1L,
>> 0L, 0L, 0L, 0L, 2L, 2L, 1L, 2L, 0L, 0L, 1L, 0L, 0L, 2L, 0L,
>> 0L, 0L, 0L, 0L), MGODPR = c(1L, 2L, 2L, 0L, 1L, 3L, 2L, 3L,
>> 2L, 1L, 2L, 3L, 0L, 3L, 2L, 2L, 2L, 0L, 2L, 1L), MAUT0 = c(8L,
>> 6L, 9L, 7L, 5L, 9L, 6L, 7L, 6L, 5L, 4L, 7L, 8L, 5L, 6L, 7L,
>> 5L, 9L, 9L, 5L), MSKB1 = c(0L, 2L, 4L, 1L, 0L, 5L, 2L, 7L,
>> 2L, 0L, 3L, 3L, 3L, 4L, 2L, 0L, 2L, 3L, 3L, 1L), MSKC = c(4L,
>> 5L, 3L, 4L, 6L, 3L, 3L, 2L, 4L, 8L, 3L, 3L, 4L, 3L, 3L, 4L,
>> 4L, 3L, 3L, 5L), PAANHA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), PWAPAR = c(0L,
>> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>> 0L, 0L, 0L, 0L), PPERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AMOTSC = c(0L,
>> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>> 0L, 0L, 0L, 0L), APERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AWAPAR = c(1L,
>> 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L,
>> 1L, 0L, 1L, 1L), Resp = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(NA,
>> 20L), class = "data.frame")
>>
>>
>> df1<-df0 %>%
>> mutate(across(starts_with('P'),~ifelse(.x==0, 0,
>> ifelse(.x==1, 25,
>> ifelse(.x==2, 75,
>> ifelse(.x==3, 150,
>> ifelse(.x==4, 350,
>> ifelse(.x==5, 750,
>> ifelse(.x==6, 3000,
>> ifelse(.x==7, 7500,
>> ifelse(.x==8,15000,
>> ifelse(.x==9,30000,
>> -99))))))))))))
>>
>> df2<-df1 %>%
>> mutate_at(vars(MRELGE:MSKC),~ifelse(.x==0, 0,
>> ifelse(.x==1, 5,
>> -99)))
>> df3<-df2 %>%
>> mutate_at(vars(MGODRK),~ifelse(.x==0, 0,
>> ifelse(.x==1, 5,
>> -99)))
>>
>>
>>
>>
>> [[alternative HTML version deleted]]
>>
>> ______________________________________________
>> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide https://www.R-project.org/posting-
>> guide.html
>> and provide commented, minimal, self-contained, reproducible code.
> Hello,
>
> Use chained mutate() %>% mutate(). In the 2nd mutate I don't even have
> to pipe a third time, the final variable is changed in the same
> instruction.
>
> Also use mutate(across(...)), mutate_at is deprecated.
>
> And use ?case_when instead of nested ifelse's. It's much cleaner.
>
> As you can see, the result is identical to your code's result.
>
>
>
> library(dplyr)
>
> df3b <- df0 %>%
> mutate(
> across(starts_with('P'), ~case_when(
> .x == 0 ~ 0,
> .x == 1 ~ 25,
> .x == 2 ~ 75,
> .x == 3 ~ 150,
> .x == 4 ~ 350,
> .x == 5 ~ 750,
> .x == 6 ~ 3000,
> .x == 7 ~ 7500,
> .x == 8 ~ 15000,
> .x == 9 ~ 30000,
> TRUE ~ -99
> ))
> ) %>%
> mutate(
> across(MRELGE:MSKC, ~case_when(
> .x == 0 ~ 0,
> .x == 1 ~ 5,
> TRUE ~ -99
> )),
> MGODRK = case_when(
> MGODRK == 0 ~ 0,
> MGODRK == 1 ~ 5,
> TRUE ~ -99
> ))
>
> identical(df3, df3b)
> # [1] TRUE
>
>
> And you can have just one mutate, as long as you respect the order the
> variables are changed.
>
>
>
> df3c <- df0 %>%
> mutate(
> across(starts_with('P'), ~case_when(
> .x == 0 ~ 0,
> .x == 1 ~ 25,
> .x == 2 ~ 75,
> .x == 3 ~ 150,
> .x == 4 ~ 350,
> .x == 5 ~ 750,
> .x == 6 ~ 3000,
> .x == 7 ~ 7500,
> .x == 8 ~ 15000,
> .x == 9 ~ 30000,
> TRUE ~ -99
> )),
> across(MRELGE:MSKC, ~case_when(
> .x == 0 ~ 0,
> .x == 1 ~ 5,
> TRUE ~ -99
> )),
> MGODRK = case_when(
> MGODRK == 0 ~ 0,
> MGODRK == 1 ~ 5,
> TRUE ~ -99
> )
> )
>
> identical(df3, df3c)
> # [1] TRUE
>
>
> Hope this helps,
>
> Rui Barradas
>
>
Hello,
Two other simpler solutions.
In the pipes above you can put the two last case_when statements together.
df3d <- df0 %>%
mutate(
across(starts_with('P'), ~case_when(
.x == 0 ~ 0,
.x == 1 ~ 25,
.x == 2 ~ 75,
.x == 3 ~ 150,
.x == 4 ~ 350,
.x == 5 ~ 750,
.x == 6 ~ 3000,
.x == 7 ~ 7500,
.x == 8 ~ 15000,
.x == 9 ~ 30000,
TRUE ~ -99
)),
across(c(MGODRK, MRELGE:MSKC), ~case_when(
.x == 0 ~ 0,
.x == 1 ~ 5,
TRUE ~ -99
))
)
identical(df3, df3d)
# [1] TRUE
And this one combines ifelse with case_when. But you need to create an
auxiliary variable of the new values for the 'P' case.
P_new_vals <- c(0, 25, 75, 150, 350, 750, 3000, 7500, 15000, 30000)
df3e <- df0 %>% mutate(
across(starts_with('P'), ~ifelse(.x %in% 0:9, P_new_vals[.x + 1L], -99)),
across(c(MGODRK, MRELGE:MSKC), ~case_when(
.x == 0 ~ 0,
.x == 1 ~ 5,
TRUE ~ -99
))
)
identical(df3, df3e)
# [1] TRUE
Hope this helps,
Rui Barradas
--
Este e-mail foi analisado pelo software antivírus AVG para verificar a presença de vírus.
www.avg.com
More information about the R-help
mailing list