[R] DPLYR Multiple Mutate Statements On Same DataFrame

Rui Barradas ru|pb@rr@d@@ @end|ng |rom @@po@pt
Fri Oct 18 09:55:56 CEST 2024


Às 08:27 de 18/10/2024, Rui Barradas escreveu:
> Às 22:50 de 17/10/2024, Sparks, John escreveu:
>> Hi R Helpers,
>>
>> I have been looking for an example of how to execute different dplyr 
>> mutate statements on the same dataframe in a single step.  I show how 
>> to do what I want to do by going from df0 to df1 to df2 to df3 by 
>> applying a mutate statement to each dataframe in sequence, but I would 
>> like to know if there is a way to execute this in a single step; so 
>> simply go from df0 to df1 while executing all the transformations.   
>> See example below.
>>
>> Guidance would be appreciated.
>> --John J. Sparks, Ph.D.
>>
>> library(dplyr)
>> df0<-structure(list(SeqNum = c(1L, 2L, 3L, 4L, 5L, 6L, 8L, 9L, 10L,
>> 11L, 12L, 13L, 14L, 15L, 16L, 18L, 19L, 21L, 22L, 23L), MOSTYP = c(37L,
>> 41L, 41L, 13L, 3L, 27L, 37L, 37L, 15L, 14L, 13L, 37L, 4L, 27L,
>> 37L, 26L, 17L, 37L, 37L, 17L), MGEMOM = c(1L, 1L, 1L, 1L, 1L,
>> 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L),
>>      MGODRK = c(3L, 2L, 2L, 3L, 4L, 2L, 2L, 2L, 3L, 4L, 3L, 2L,
>>      3L, 1L, 2L, 3L, 4L, 4L, 3L, 3L), MOSHOO = c(7L, 7L, 7L, 2L,
>>      9L, 4L, 7L, 7L, 2L, 2L, 2L, 7L, 9L, 4L, 7L, 4L, 2L, 7L, 7L,
>>      2L), MRELGE = c(0L, 1L, 0L, 2L, 1L, 0L, 0L, 0L, 3L, 1L, 1L,
>>      1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 1L), MSKB2 = c(5L, 4L, 4L,
>>      3L, 4L, 5L, 7L, 1L, 5L, 4L, 3L, 4L, 5L, 6L, 7L, 5L, 4L, 6L,
>>      4L, 7L), MFWEKI = c(1L, 1L, 2L, 2L, 1L, 0L, 0L, 3L, 0L, 1L,
>>      2L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L), MAANTH = c(3L, 4L,
>>      4L, 4L, 4L, 5L, 2L, 6L, 2L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 3L,
>>      3L, 3L, 2L), MHHUUR = c(2L, 2L, 4L, 2L, 2L, 3L, 0L, 3L, 2L,
>>      2L, 2L, 3L, 1L, 6L, 0L, 2L, 2L, 0L, 2L, 2L), MSKA = c(1L,
>>      0L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, 0L, 2L, 3L, 1L, 5L, 0L, 0L,
>>      1L, 0L, 0L, 1L), MAUT2 = c(2L, 4L, 4L, 3L, 4L, 5L, 5L, 3L,
>>      2L, 3L, 3L, 4L, 4L, 3L, 5L, 2L, 3L, 3L, 2L, 3L), MFALLE = c(1L,
>>      0L, 0L, 3L, 5L, 0L, 0L, 0L, 0L, 4L, 1L, 1L, 2L, 2L, 0L, 2L,
>>      5L, 0L, 0L, 3L), MGEMLE = c(1L, 0L, 0L, 0L, 4L, 0L, 0L, 0L,
>>      0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 3L, 2L, 0L), MAUT1 = c(2L,
>>      5L, 7L, 3L, 0L, 4L, 2L, 1L, 3L, 9L, 5L, 3L, 2L, 4L, 2L, 1L,
>>      3L, 0L, 4L, 2L), MINKGE = c(2L, 4L, 2L, 2L, 0L, 2L, 2L, 1L,
>>      3L, 0L, 1L, 4L, 2L, 2L, 2L, 5L, 1L, 0L, 3L, 1L), MOPLHO = c(1L,
>>      0L, 0L, 0L, 0L, 2L, 2L, 1L, 2L, 0L, 0L, 1L, 0L, 0L, 2L, 0L,
>>      0L, 0L, 0L, 0L), MGODPR = c(1L, 2L, 2L, 0L, 1L, 3L, 2L, 3L,
>>      2L, 1L, 2L, 3L, 0L, 3L, 2L, 2L, 2L, 0L, 2L, 1L), MAUT0 = c(8L,
>>      6L, 9L, 7L, 5L, 9L, 6L, 7L, 6L, 5L, 4L, 7L, 8L, 5L, 6L, 7L,
>>      5L, 9L, 9L, 5L), MSKB1 = c(0L, 2L, 4L, 1L, 0L, 5L, 2L, 7L,
>>      2L, 0L, 3L, 3L, 3L, 4L, 2L, 0L, 2L, 3L, 3L, 1L), MSKC = c(4L,
>>      5L, 3L, 4L, 6L, 3L, 3L, 2L, 4L, 8L, 3L, 3L, 4L, 3L, 3L, 4L,
>>      4L, 3L, 3L, 5L), PAANHA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), PWAPAR = c(0L,
>>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>>      0L, 0L, 0L, 0L), PPERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AMOTSC = c(0L,
>>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>>      0L, 0L, 0L, 0L), APERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AWAPAR = c(1L,
>>      1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L,
>>      1L, 0L, 1L, 1L), Resp = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(NA,
>> 20L), class = "data.frame")
>>
>>             
>> df1<-df0 %>%
>>    mutate(across(starts_with('P'),~ifelse(.x==0,   0,
>>                                    ifelse(.x==1,   25,
>>                                                   ifelse(.x==2,   75,
>>                                                   ifelse(.x==3,  150,
>>                                                   ifelse(.x==4,  350,
>>                                                   ifelse(.x==5,  750,
>>                                                   ifelse(.x==6, 3000,
>>                                                   ifelse(.x==7, 7500,
>>                                                   ifelse(.x==8,15000,
>>                                                   ifelse(.x==9,30000,
>>                                                   -99))))))))))))
>>
>> df2<-df1 %>%
>> mutate_at(vars(MRELGE:MSKC),~ifelse(.x==0,  0,
>>                               ifelse(.x==1,  5,
>>                                                       -99)))
>> df3<-df2 %>%
>> mutate_at(vars(MGODRK),~ifelse(.x==0,  0,
>>                          ifelse(.x==1,  5,
>>                                                       -99)))
>>
>>
>>
>>
>>     [[alternative HTML version deleted]]
>>
>> ______________________________________________
>> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide https://www.R-project.org/posting- 
>> guide.html
>> and provide commented, minimal, self-contained, reproducible code.
> Hello,
> 
> Use chained mutate() %>% mutate(). In the 2nd mutate I don't even have 
> to pipe a third time, the final variable is changed in the same 
> instruction.
> 
> Also use mutate(across(...)), mutate_at is deprecated.
> 
> And use ?case_when instead of nested ifelse's. It's much cleaner.
> 
> As you can see, the result is identical to your code's result.
> 
> 
> 
> library(dplyr)
> 
> df3b <- df0 %>%
>    mutate(
>      across(starts_with('P'), ~case_when(
>        .x == 0 ~ 0,
>        .x == 1 ~ 25,
>        .x == 2 ~ 75,
>        .x == 3 ~ 150,
>        .x == 4 ~ 350,
>        .x == 5 ~ 750,
>        .x == 6 ~ 3000,
>        .x == 7 ~ 7500,
>        .x == 8 ~ 15000,
>        .x == 9 ~ 30000,
>        TRUE ~ -99
>      ))
>    ) %>%
>    mutate(
>      across(MRELGE:MSKC, ~case_when(
>        .x == 0 ~ 0,
>        .x == 1 ~ 5,
>        TRUE ~ -99
>      )),
>      MGODRK = case_when(
>        MGODRK == 0 ~ 0,
>        MGODRK == 1 ~ 5,
>        TRUE ~ -99
>      ))
> 
> identical(df3, df3b)
> # [1] TRUE
> 
> 
> And you can have just one mutate, as long as you respect the order the 
> variables are changed.
> 
> 
> 
> df3c <- df0 %>%
>    mutate(
>      across(starts_with('P'), ~case_when(
>        .x == 0 ~ 0,
>        .x == 1 ~ 25,
>        .x == 2 ~ 75,
>        .x == 3 ~ 150,
>        .x == 4 ~ 350,
>        .x == 5 ~ 750,
>        .x == 6 ~ 3000,
>        .x == 7 ~ 7500,
>        .x == 8 ~ 15000,
>        .x == 9 ~ 30000,
>        TRUE ~ -99
>      )),
>      across(MRELGE:MSKC, ~case_when(
>        .x == 0 ~ 0,
>        .x == 1 ~ 5,
>        TRUE ~ -99
>      )),
>      MGODRK = case_when(
>        MGODRK == 0 ~ 0,
>        MGODRK == 1 ~ 5,
>        TRUE ~ -99
>      )
>    )
> 
> identical(df3, df3c)
> # [1] TRUE
> 
> 
> Hope this helps,
> 
> Rui Barradas
> 
> 
Hello,

Two other simpler solutions.
In the pipes above you can put the two last case_when statements together.



df3d <- df0 %>%
   mutate(
     across(starts_with('P'), ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 25,
       .x == 2 ~ 75,
       .x == 3 ~ 150,
       .x == 4 ~ 350,
       .x == 5 ~ 750,
       .x == 6 ~ 3000,
       .x == 7 ~ 7500,
       .x == 8 ~ 15000,
       .x == 9 ~ 30000,
       TRUE ~ -99
     )),
     across(c(MGODRK, MRELGE:MSKC), ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 5,
       TRUE ~ -99
     ))
   )

identical(df3, df3d)
# [1] TRUE



And this one combines ifelse with case_when. But you need to create an 
auxiliary variable of the new values for the 'P' case.



P_new_vals <- c(0, 25, 75, 150, 350, 750, 3000, 7500, 15000, 30000)
df3e <- df0 %>% mutate(
   across(starts_with('P'), ~ifelse(.x %in% 0:9, P_new_vals[.x + 1L], -99)),
   across(c(MGODRK, MRELGE:MSKC), ~case_when(
     .x == 0 ~ 0,
     .x == 1 ~ 5,
     TRUE ~ -99
   ))
)
identical(df3, df3e)
# [1] TRUE


Hope this helps,

Rui Barradas


-- 
Este e-mail foi analisado pelo software antivírus AVG para verificar a presença de vírus.
www.avg.com



More information about the R-help mailing list