[R] Sensitivity and Specificity
Michael Dewey
||@t@ @end|ng |rom dewey@myzen@co@uk
Mon Oct 24 19:10:12 CEST 2022
So predict is a one-dimensional vector of predictions but you are
treating it as a two-dimensional matrix (presumably you think those are
the totals).
Michael
On 24/10/2022 16:50, greg holly wrote:
> Hi Michael,
>
> I appreciate your writing. Here are what I have after;
>
> > predict_testing <- ifelse(predict > 0.5,1,0)
> >
> > head(predict)
> 1 2 3 5 7 8
> 0.29006984 0.28370507 0.10761993 0.02204224 0.12873872 0.08127920
> >
> > # Sensitivity and Specificity
> >
> >
> sensitivity<-(predict_testing[2,2]/(predict_testing[2,2]+predict_testing[2,1]))*100
> Error in predict_testing[2, 2] : incorrect number of dimensions
> > sensitivity
> function (data, ...)
> {
> UseMethod("sensitivity")
> }
> <bytecode: 0x000002082a2f01d8>
> <environment: namespace:caret>
> >
> >
> specificity<-(predict_testing[1,1]/(predict_testing[1,1]+predict_testing[1,2]))*100
> Error in predict_testing[1, 1] : incorrect number of dimensions
> > specificity
> function (data, ...)
> {
> UseMethod("specificity")
> }
> <bytecode: 0x000002082a2fa600>
> <environment: namespace:caret>
>
> On Mon, Oct 24, 2022 at 10:45 AM Michael Dewey <lists using dewey.myzen.co.uk
> <mailto:lists using dewey.myzen.co.uk>> wrote:
>
> Rather hard to know without seeing what output you expected and what
> error message you got if any but did you mean to summarise your
> variable
> predict before doing anything with it?
>
> Michael
>
> On 24/10/2022 16:17, greg holly wrote:
> > Hi all R-Help ,
> >
> > After partitioning my data to testing and training (please see
> below), I
> > need to estimate the Sensitivity and Specificity. I failed. It
> would be
> > appropriate to get your help.
> >
> > Best regards,
> > Greg
> >
> >
> > inTrain <- createDataPartition(y=data$case,
> > p=0.7,
> > list=FALSE)
> > training <- data[ inTrain,]
> > testing <- data[-inTrain,]
> >
> > attach(training)
> > #model training and prediction
> > data_training <- glm(case ~ age+BMI+Calcium+Albumin+meno_1, data =
> > training, family = binomial(link="logit"))
> >
> > predict <- predict(data_training, data_predict = testing, type =
> "response")
> >
> > predict_testing <- ifelse(predict > 0.5,1,0)
> >
> > # Sensitivity and Specificity
> >
> >
> sensitivity<-(predict_testing[2,2]/(predict_testing[2,2]+predict_testing[2,1]))*100
> > sensitivity
> >
> >
> specificity<-(predict_testing[1,1]/(predict_testing[1,1]+predict_testing[1,2]))*100
> > specificity
> >
> > [[alternative HTML version deleted]]
> >
> > ______________________________________________
> > R-help using r-project.org <mailto:R-help using r-project.org> mailing list
> -- To UNSUBSCRIBE and more, see
> > https://stat.ethz.ch/mailman/listinfo/r-help
> <https://stat.ethz.ch/mailman/listinfo/r-help>
> > PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> <http://www.R-project.org/posting-guide.html>
> > and provide commented, minimal, self-contained, reproducible code.
> >
>
> --
> Michael
> http://www.dewey.myzen.co.uk/home.html
> <http://www.dewey.myzen.co.uk/home.html>
>
>
> <http://www.avg.com/email-signature?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient> Virus-free.www.avg.com <http://www.avg.com/email-signature?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient>
>
> <#DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2>
--
Michael
http://www.dewey.myzen.co.uk/home.html
More information about the R-help
mailing list