[R] Initial value choosing in nleqslv package
ASHLIN VARKEY
@@h||nv@rkey @end|ng |rom gm@||@com
Tue Nov 15 08:49:02 CET 2022
In my work, I use l-moments for estimation and obtain a system of
nonlinear equations. I am using the 'nleqslv' package in the R- program to
solve these equations but am struggling to choose initial values. Is there
any criteria to choose initial values in this package or is there any other
method to solve these equations? My system of equations are given below.
simeqn=function(x){
y=numeric(4)
y[1]=x[1]*(((gamma(1+x[2])*gamma(x[3]-x[2]))/gamma(x[3]))+((gamma(1-
x[2])*gamma(x[4]+x[2]))/gamma(x[4])))- 38353
y[2]=x[1]*gamma(1+x[2])*((gamma(x[3]-x[2])/gamma(x[3]))-(gamma(2*x[3]-x[2])/gamma(2*x[3]))-(gamma(x[4]+x[2])/gamma(x[4]))+(gamma(2*x[4]+x[2])/gamma(2*x[4])))-
3759.473
y[3]=x[1]*gamma(1+x[2])*((gamma(x[3]-x[2])/gamma(x[3]))-(3*gamma(2*x[3]-x[2])/gamma(2*x[3]))+(2*gamma(3*x[3]-x[2])/gamma(3*x[3]))+(gamma(x[4]+x[2])/gamma(x[4]))-(3*gamma(2*x[4]+x[2])/gamma(2*x[4]))+(2*gamma(3*x[4]+x[2])/gamma(3*x[4])))-
966.3958
y[4]=
x[1]*gamma(1+x[2])*((gamma(x[3]-x[2])/gamma(x[3]))-(6*gamma(2*x[3]-x[2])/gamma(2*x[3]))+(10*gamma(3*x[3]-x[2])/gamma(3*x[3]))-(5*gamma(4*x[3]-x[2])/gamma(4*x[3]))-(gamma(x[4]+x[2])/gamma(x[4]))+(6*gamma(2*x[4]+x[2])/gamma(2*x[4]))-(10*gamma(3*x[4]+x[2])/gamma(3*x[4]))+(5*gamma(4*x[4]+x[2])/gamma(4*x[4])))-
500.952
y
}
[[alternative HTML version deleted]]
More information about the R-help
mailing list