[R] Request for some help about uncertainty analysis using bootstrap approach
Bhaskar Mitra
bh@@k@r@ko|k@t@ @end|ng |rom gm@||@com
Wed Jun 1 18:22:14 CEST 2022
Thanks Rui. This is really helpful.
Regards,
Bhaskar
On Tue, May 31, 2022 at 4:03 AM Rui Barradas <ruipbarradas using sapo.pt> wrote:
> Hello,
>
> You can use package boot to bootstrap the statistic for you.
> Write a function to compute the new column and assign the column means
> to the new variable Z or, like in the code below Z2 (so that you can
> compare to the Z column of simple averages).
>
> library(dplyr)
> library(boot)
>
> boot_uncert <- function(data, indices) {
> data[indices, ] %>%
> group_by(Group) %>%
> mutate(Y = mean(X, na.rm = TRUE),
> Z = coalesce(X, Y)) %>%
> pull(Z)
> }
>
> Df1 <- Df1 %>%
> group_by(Group) %>%
> mutate(Y = mean(X, na.rm = TRUE),
> Z = coalesce(X, Y)) %>%
> ungroup()
>
> set.seed(2022)
> R <- 1e3
>
> Df1 %>%
> mutate(Z2 = colMeans(boot(., boot_uncert, R = R)$t, na.rm = TRUE),
> Z2 = coalesce(X, Z2))
>
> Hope this helps,
>
> Rui Barradas
>
>
> Às 22:23 de 29/05/2022, Bhaskar Mitra escreveu:
> > Hello Everyone,
> >
> > I have a query about uncertainty analysis and would really appreciate
> some
> > help in this regard.
> >
> > I intend to gapfill the NAs in the “X” column of the dataframe (Df1). I
> > have grouped the data using the column “Group” ,
> > determined the mean and generated the “Z” column.
> >
> > While I am using the mean and standard error approach to generate the
> > uncertainty analysis, can we use the bootstrap approach to
> > generate the uncertainty for the “Z” column? Any help in this regard will
> > be really appreciated.
> >
> > Regards,
> > Bhaskar
> > ---------------------------------------------------------------
> >
> > Df1 <-
> >
> > Group X Y Z
> > 1 2 3 2
> > 1 NA 3 3
> > 1 3 3 3
> > 1 4 3 4
> > 2 2 2 1
> > 2 NA 2 3
> > 2 NA 2 3
> > 2 4 2 4
> > 3 2 2 2
> > 3 NA 2 2
> > 3 2 2 2
> >
> >
> -------------------------------------------------------------------------------
> > Codes:
> >
> > Df1 <- Df1 %>% group_by(Group) %>% summarise(Y= mean(X), na.rm=T)
> >
> > Df1 <- Df1%>% mutate(Z= coalesce(X,Y))
> >
> > [[alternative HTML version deleted]]
> >
> > ______________________________________________
> > R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
>
[[alternative HTML version deleted]]
More information about the R-help
mailing list