[R] empty plots !

Jim Lemon drj|m|emon @end|ng |rom gm@||@com
Wed May 12 13:03:32 CEST 2021


Hi varin,
Were you expecting image files? I don't see any plot device e.g. pdf()
in your code.

Jim

On Wed, May 12, 2021 at 6:34 PM varin sacha via R-help
<r-help using r-project.org> wrote:
>
> Dear Experts,
>
> My R code was perfectly working since I decide to add a 5th correlation coefficient : hoeffdings' D.
> fter a google search, I guess I need somewhere in my R code "unlist" but I don't know where !
> Here below my R code with 1 error message. At the end I get my 8 plots but they are empty !
> Many thanks for your precious help !
>
> #################
> set.seed(1)
> library(energy)
> library(independence)
> library(TauStar)
>
> # Here we define parameters which we use to simulate the data
> # The number of null datasets we use to estimate our rejection reject #regions for an alternative with level 0.05
> nsim=50
>
> # Number of alternative datasets we use to estimate our power
> nsim2=50
>
> # The number of different noise levels used
> num.noise <- 30
>
> # A constant to determine the amount of noise
> noise <- 3
>
> # Number of data points per simulation
>
> n=100
>
> # Vectors holding the null "correlations" (for pearson, for spearman, for #kendall, for hoeffding and dcor respectively) for each of the nsim null datasets at a #given noise level
> val.cor=val.cors=val.cork=val.dcor=val.hoe=rep(NA,nsim)
>
> # Vectors holding the alternative "correlations" (for pearson, for #spearman, for kendall, for hoeffding and dcor respectively) for each of #the nsim2 #alternative datasets at a given noise level
> val.cor2=val.cors2=val.cork2=val.dcor2=val.hoe2= rep(NA,nsim2)
>
> # Arrays holding the estimated power for each of the 4 "correlation" types, #for each data type (linear, parabolic, etc...) with each noise level
> power.cor=power.cors=power.cork=power.dcor=power.hoe= array(NA, c(8,num.noise))
>
> ## We loop through the noise level and functional form; each time we #estimate a null distribution based on the marginals of the data, and then #use that null distribution to estimate power
> ## We use a uniformly distributed x, because in the original paper the #authors used the same
>
> for(l in 1:num.noise){
>
>       for(typ in 1:8){
>
> ## This next loop simulates data under the null with the correct marginals #(x is uniform, and y is a function of a uniform with gaussian noise)
>
>     for(ii in 1:nsim){
>       x=runif(n)
>
> #lin+noise
> if(typ==1){
> y=x+ noise *(l/num.noise)* rnorm(n)
> }
>
> #parabolic+noise
> if(typ==2){
> y=4*(x-.5)^2+  noise * (l/num.noise) * rnorm(n)
> }
>
> #cubic+noise
> if(typ==3){
> y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise  * (l/num.noise) *rnorm(n)
> }
>
> #sin+noise
> if(typ==4){
> y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n)
> }
>
> #their sine + noise
> if(typ==5){
> y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n)
> }
>
> #x^(1/4) + noise
> if(typ==6){
> y=x^(1/4) + noise * (l/num.noise) *rnorm(n)
> }
>
> #circle
> if(typ==7){
> y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise *rnorm(n)
> }
>
> #step function
> if(typ==8){
> y = (x > 0.5) + noise*5*l/num.noise *rnorm(n)
> }
>
> # We resimulate x so that we have the null scenario
> x <- runif(n)
>
> # Calculate the 5 correlations
> val.cor[ii]=(cor(x,y))
> val.cors[ii]=(cor(x,y,method=c("spearman")))
> val.cork[ii]=(cor(x,y,method=c("kendal")))
> val.dcor[ii]=dcor(x,y)
> val.hoe[ii]=(hoeffding.D.test(x,y,na.rm=TRUE,collisions=TRUE))
> }
>
> ## Next we calculate our 5 rejection cutoffs
> cut.cor=quantile(val.cor,.95)
> cut.cors=quantile(val.cors,.95)
> cut.cork=quantile(val.cork,.95)
> cut.dcor=quantile(val.dcor,.95)
> cut.hoe=quantile(val.hoe,.95)
>
> ## Next we simulate the data again, this time under the alternative
>
>     for(ii in 1:nsim2){
>       x=runif(n)
>
> #lin+noise
> if(typ==1){
> y=x+ noise *(l/num.noise)* rnorm(n)
> }
>
> #parabolic+noise
> if(typ==2){
> y=4*(x-.5)^2+  noise * (l/num.noise) * rnorm(n)
> }
>
> #cubic+noise
> if(typ==3){
> y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise  * (l/num.noise) *rnorm(n)
> }
>
> #sin+noise
> if(typ==4){
> y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n)
> }
>
> #their sine + noise
> if(typ==5){
> y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n)
> }
>
> #x^(1/4) + noise
> if(typ==6){
> y=x^(1/4) + noise * (l/num.noise) *rnorm(n)
> }
>
> #circle
> if(typ==7){
> y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise *rnorm(n)
> }
>
> #step function
> if(typ==8){
> y = (x > 0.5) + noise*5*l/num.noise *rnorm(n)
> }
>
> ## We again calculate our 5 correlations
> val.cor2[ii]=(cor(x,y))
> val.cors2[ii]=(cor(x,y,method=c("spearman")))
> val.cork2[ii]=(cor(x,y,method=c("kendal")))
> val.dcor2[ii]=dcor(x,y)
> val.hoe2[ii]=(hoeffding.D.test(x,y,na.rm=TRUE,collisions=TRUE))
> }
>
> ## Now we estimate the power as the number of alternative statistics #exceeding our estimated cutoffs
> power.cor[typ,l] <- sum(val.cor2 > cut.cor)/nsim2
> power.cors[typ,l] <- sum(val.cors2 > cut.cor)/nsim2
> power.cork[typ,l] <- sum(val.cork2 > cut.cor)/nsim2
> power.dcor[typ,l] <- sum(val.dcor2 > cut.dcor)/nsim2
> power.hoe[typ,l] <- sum(val.hoe2 > cut.hoe)/nsim2
> }
> }
>
> ## The rest of the code is for plotting the image
> par(mfrow = c(4,2), cex = 0.45)
> plot((1:30)/10, power.cor[1,], ylim = c(0,1), main = "Linear", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> points((1:30)/10, power.cors[1,], pch = 2, col = "green", type = 'b')
> points((1:30)/10, power.cork[1,], pch = 3, col = "blue", type = 'b')
> points((1:30)/10, power.dcor[1,], pch = 4, col = "red", type = 'b')
> points((1:30)/10, power.hoe[1,], pch = 5, col = "purple", type = 'b')
> legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor","hoe" ), pch = c(1,2,3,4,5), col = c("black","green","blue","red", "purple"))
>
> plot((1:30)/10, power.cor[2,], ylim = c(0,1), main = "Quadratic", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> points((1:30)/10, power.cors[2,], pch = 2, col = "green", type = 'b')
> points((1:30)/10, power.cork[2,], pch = 3, col = "blue", type = 'b')
> points((1:30)/10, power.dcor[2,], pch = 4, col = "red", type = 'b')
> points((1:30)/10, power.hoe[2,], pch = 5, col = "purple", type = 'b')
> legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor","hoe" ), pch = c(1,2,3,4,5), col = c("black","green","blue","red", "purple"))
>
> plot((1:30)/10, power.cor[3,], ylim = c(0,1), main = "Cubic", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> points((1:30)/10, power.cors[3,], pch = 2, col = "green", type = 'b')
> points((1:30)/10, power.cork[3,], pch = 3, col = "blue", type = 'b')
> points((1:30)/10, power.dcor[3,], pch = 4, col = "red", type = 'b')
> points((1:30)/10, power.hoe[3,], pch = 5, col = "purple", type = 'b')
> legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor","hoe" ), pch = c(1,2,3,4,5), col = c("black","green","blue","red", "purple"))
>
> plot((1:30)/10, power.cor[5,], ylim = c(0,1), main = "Sine: period 1/8", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> points((1:30)/10, power.cors[5,], pch = 2, col = "green", type = 'b')
> points((1:30)/10, power.cork[5,], pch = 3, col = "blue", type = 'b')
> points((1:30)/10, power.dcor[5,], pch = 4, col = "red", type = 'b')
> points((1:30)/10, power.hoe[5,], pch = 5, col = "purple", type = 'b')
> legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor","hoe" ), pch = c(1,2,3,4,5), col = c("black","green","blue","red", "purple"))
>
> plot((1:30)/10, power.cor[4,], ylim = c(0,1), main = "Sine: period 1/2", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> points((1:30)/10, power.cors[4,], pch = 2, col = "green", type = 'b')
> points((1:30)/10, power.cork[4,], pch = 3, col = "blue", type = 'b')
> points((1:30)/10, power.dcor[4,], pch = 4, col = "red", type = 'b')
> points((1:30)/10, power.hoe[4,], pch = 5, col = "purple", type = 'b')
> legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor","hoe" ), pch = c(1,2,3,4,5), col = c("black","green","blue","red", "purple"))
>
> plot((1:30)/10, power.cor[6,], ylim = c(0,1), main = "X^(1/4)", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> points((1:30)/10, power.cors[6,], pch = 2, col = "green", type = 'b')
> points((1:30)/10, power.cork[6,], pch = 3, col = "blue", type = 'b')
> points((1:30)/10, power.dcor[6,], pch = 4, col = "red", type = 'b')
> points((1:30)/10, power.hoe[6,], pch = 5, col = "purple", type = 'b')
> legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor","hoe" ), pch = c(1,2,3,4,5), col = c("black","green","blue","red", "purple"))
>
> plot((1:30)/10, power.cor[7,], ylim = c(0,1), main = "Circle", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> points((1:30)/10, power.cors[7,], pch = 2, col = "green", type = 'b')
> points((1:30)/10, power.cork[7,], pch = 3, col = "blue", type = 'b')
> points((1:30)/10, power.dcor[7,], pch = 4, col = "red", type = 'b')
> points((1:30)/10, power.hoe[7,], pch = 5, col = "purple", type = 'b')
> legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor","hoe" ), pch = c(1,2,3,4,5), col = c("black","green","blue","red", "purple"))
>
> plot((1:30)/10, power.cor[8,], ylim = c(0,1), main = "Step function", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> points((1:30)/10, power.cors[8,], pch = 2, col = "green", type = 'b')
> points((1:30)/10, power.cork[8,], pch = 3, col = "blue", type = 'b')
> points((1:30)/10, power.dcor[8,], pch = 4, col = "red", type = 'b')
> points((1:30)/10, power.hoe[8,], pch = 5, col = "purple", type = 'b')
> legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor","hoe" ), pch = c(1,2,3,4,5), col = c("black","green","blue","red", "purple"))
> #################
>
>
>
>
>
>
>
>
>
> Le mardi 11 mai 2021 à 20:00:49 UTC+2, varin sacha via R-help <r-help using r-project.org> a écrit :
>
>
>
>
>
> Dear all,
>
> Many thanks for your responses.
>
> Best
> S.
>
>
>
>
>
>
>
> Le lundi 10 mai 2021 à 17:18:59 UTC+2, Bill Dunlap <williamwdunlap using gmail.com> a écrit :
>
>
>
>
>
> Also, normalizePath("power.pdf").
>
> On Sun, May 9, 2021 at 5:13 PM Bert Gunter <bgunter.4567 using gmail.com> wrote:
> > ?getwd
> >
> > Bert Gunter
> >
> > "The trouble with having an open mind is that people keep coming along and
> > sticking things into it."
> > -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip )
> >
> >
> > On Sun, May 9, 2021 at 2:59 PM varin sacha via R-help <r-help using r-project.org>
> > wrote:
> >
> >> Rui,
> >>
> >> The created pdf.file is off-screen device. Indeed after dev.off() I should
> >> view the pdf file on my computer. But I don't find it. Where do I find the
> >> pdf.file ?
> >>
> >> Regards,
> >>
> >>
> >>
> >> Le dimanche 9 mai 2021 à 22:44:22 UTC+2, Rui Barradas <
> >> ruipbarradas using sapo.pt> a écrit :
> >>
> >>
> >>
> >>
> >>
> >> Hello,
> >>
> >> You are not closing the pdf device.
> >> The only changes I have made to your code are right at the beginning of
> >> the plotting instructions and at the end of the code.
> >>
> >>
> >> ## The rest of the code is for plotting the image
> >> pdf(file = "power.pdf")
> >> op <- par(mfrow = c(4,2), cex = 0.45)
> >>
> >> [...]
> >>
> >> par(op)
> >> dev.off()
> >> #################
> >>
> >> The comments only line is your last code line.
> >> The result is attached.
> >>
> >> Hope this helps,
> >>
> >> Rui Barradas
> >>
> >> Às 19:39 de 09/05/21, varin sacha via R-help escreveu:
> >> > Dear R-experts,
> >> >
> >> > I am trying to get the 8 graphs like the ones in this paper :
> >> > https://statweb.stanford.edu/~tibs/reshef/comment.pdf
> >> > My R code does not show any error message neither warnings but I d'on't
> >> get what I would like to get (I mean the 8 graphs), so I am missing
> >> something. What's it ? Many thanks for your precious help.
> >> >
> >> > #################
> >> > set.seed(1)
> >> > library(energy)
> >> >
> >> > # Here we define parameters which we use to simulate the data
> >> > # The number of null datasets we use to estimate our rejection reject
> >> #regions for an alternative with level 0.05
> >> > nsim=50
> >> >
> >> > # Number of alternative datasets we use to estimate our power
> >> > nsim2=50
> >> >
> >> > # The number of different noise levels used
> >> > num.noise <- 30
> >> >
> >> > # A constant to determine the amount of noise
> >> > noise <- 3
> >> >
> >> > # Number of data points per simulation
> >> > n=100
> >> >
> >> > # Vectors holding the null "correlations" (for pearson, for spearman,
> >> for kendall and dcor respectively) for each # of the nsim null datasets at
> >> a #given noise level
> >> > val.cor=val.cors=val.cork=val.dcor=rep(NA,nsim)
> >> >
> >> > # Vectors holding the alternative "correlations" (for pearson, for
> >> #spearman, for kendall and dcor respectively) #for each of the nsim2
> >> alternative datasets at a given noise level
> >> > val.cor2=val.cors2=val.cork2=val.dcor2= rep(NA,nsim2)
> >> >
> >> >
> >> > # Arrays holding the estimated power for each of the 4 "correlation"
> >> types, for each data type (linear, #parabolic, etc...) with each noise level
> >> > power.cor=power.cors=power.cork=power.dcor= array(NA, c(8,num.noise))
> >> >
> >> > ## We loop through the noise level and functional form; each time we
> >> #estimate a null distribution based on #the marginals of the data, and then
> >> #use that null distribution to estimate power
> >> > ## We use a uniformly distributed x, because in the original paper the
> >> #authors used the same
> >> >
> >> > for(l in 1:num.noise) {
> >> >
> >> >        for(typ in 1:8) {
> >> >
> >> > ## This next loop simulates data under the null with the correct
> >> marginals (x is uniform, and y is a function of a #uniform with gaussian
> >> noise)
> >> >
> >> >      for(ii in 1:nsim) {
> >> >        x=runif(n)
> >> >
> >> > #lin+noise
> >> > if(typ==1) {
> >> > y=x+ noise *(l/num.noise)* rnorm(n)
> >> > }
> >> >
> >> > #parabolic+noise
> >> > if(typ==2) {
> >> > y=4*(x-.5)^2+  noise * (l/num.noise) * rnorm(n)
> >> > }
> >> >
> >> > #cubic+noise
> >> > if(typ==3) {
> >> > y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise  * (l/num.noise)
> >> *rnorm(n)
> >> > }
> >> >
> >> > #sin+noise
> >> > if(typ==4) {
> >> > y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n)
> >> > }
> >> >
> >> > #their sine + noise
> >> > if(typ==5) {
> >> > y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n)
> >> > }
> >> >
> >> > #x^(1/4) + noise
> >> > if(typ==6) {
> >> > y=x^(1/4) + noise * (l/num.noise) *rnorm(n)
> >> > }
> >> >
> >> > #circle
> >> > if(typ==7) {
> >> > y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise
> >> *rnorm(n)
> >> > }
> >> >
> >> > #step function
> >> > if(typ==8) {
> >> > y = (x > 0.5) + noise*5*l/num.noise *rnorm(n)
> >> > }
> >> >
> >> > # We resimulate x so that we have the null scenario
> >> > x <- runif(n)
> >> >
> >> > # Calculate the 4 correlations
> >> > val.cor[ii]=(cor(x,y))
> >> > val.cors[ii]=(cor(x,y,method=c("spearman")))
> >> > val.cork[ii]=(cor(x,y,method=c("kendal")))
> >> > val.dcor[ii]=dcor(x,y)
> >> > }
> >> >
> >> > ## Next we calculate our 4 rejection cutoffs
> >> > cut.cor=quantile(val.cor,.95)
> >> > cut.cors=quantile(val.cors,.95)
> >> > cut.cork=quantile(val.cork,.95)
> >> > cut.dcor=quantile(val.dcor,.95)
> >> >
> >> > ## Next we simulate the data again, this time under the alternative
> >> >
> >> >      for(ii in 1:nsim2) {
> >> >        x=runif(n)
> >> >
> >> > #lin+noise
> >> > if(typ==1) {
> >> > y=x+ noise *(l/num.noise)* rnorm(n)
> >> > }
> >> >
> >> > #parabolic+noise
> >> > if(typ==2) {
> >> > y=4*(x-.5)^2+  noise * (l/num.noise) * rnorm(n)
> >> > }
> >> >
> >> > #cubic+noise
> >> > if(typ==3) {
> >> > y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise  * (l/num.noise)
> >> *rnorm(n)
> >> > }
> >> >
> >> > #sin+noise
> >> > if(typ==4) {
> >> > y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n)
> >> > }
> >> >
> >> > #their sine + noise
> >> > if(typ==5) {
> >> > y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n)
> >> > }
> >> >
> >> > #x^(1/4) + noise
> >> > if(typ==6) {
> >> > y=x^(1/4) + noise * (l/num.noise) *rnorm(n)
> >> > }
> >> >
> >> > #circle
> >> > if(typ==7) {
> >> > y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise
> >> *rnorm(n)
> >> > }
> >> >
> >> > #step function
> >> > if(typ==8) {
> >> > y = (x > 0.5) + noise*5*l/num.noise *rnorm(n)
> >> > }
> >> >
> >> > ## We again calculate our 4 "correlations"
> >> > val.cor2[ii]=(cor(x,y))
> >> > val.cors2[ii]=(cor(x,y,method=c("spearman")))
> >> > val.cork2[ii]=(cor(x,y,method=c("kendal")))
> >> > val.dcor2[ii]=dcor(x,y)
> >> > }
> >> >
> >> > ## Now we estimate the power as the number of alternative statistics
> >> #exceeding our estimated cutoffs
> >> > power.cor[typ,l] <- sum(val.cor2 > cut.cor)/nsim2
> >> > power.cors[typ,l] <- sum(val.cors2 > cut.cor)/nsim2
> >> > power.cork[typ,l] <- sum(val.cork2 > cut.cor)/nsim2
> >> > power.dcor[typ,l] <- sum(val.dcor2 > cut.dcor)/nsim2
> >> > }
> >> > }
> >> >
> >> > save.image()
> >> >
> >> > ## The rest of the code is for plotting the image
> >> > pdf("power.pdf")
> >> > par(mfrow = c(4,2), cex = 0.45)
> >> > plot((1:30)/10, power.cor[1,], ylim = c(0,1), main = "Linear", xlab =
> >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> >> > points((1:30)/10, power.cors[1,], pch = 2, col = "green", type = 'b')
> >> > points((1:30)/10, power.cork[1,], pch = 3, col = "blue", type = 'b')
> >> > points((1:30)/10, power.dcor[1,], pch = 4, col = "red", type = 'b')
> >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"),
> >> pch = c(1,2,3), col = c("black","green","blue","red"))
> >> >
> >> > plot((1:30)/10, power.cor[2,], ylim = c(0,1), main = "Quadratic", xlab =
> >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> >> > points((1:30)/10, power.cors[2,], pch = 2, col = "green", type = 'b')
> >> > points((1:30)/10, power.cork[2,], pch = 3, col = "blue", type = 'b')
> >> > points((1:30)/10, power.dcor[2,], pch = 4, col = "red", type = 'b')
> >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"),
> >> pch = c(1,2,3), col = c("black","green","blue","red"))
> >> >
> >> > plot((1:30)/10, power.cor[3,], ylim = c(0,1), main = "Cubic", xlab =
> >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> >> > points((1:30)/10, power.cors[3,], pch = 2, col = "green", type = 'b')
> >> > points((1:30)/10, power.cork[3,], pch = 3, col = "blue", type = 'b')
> >> > points((1:30)/10, power.dcor[3,], pch = 4, col = "red", type = 'b')
> >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"),
> >> pch = c(1,2,3), col = c("black","green","blue","red"))
> >> >
> >> > plot((1:30)/10, power.cor[5,], ylim = c(0,1), main = "Sine: period 1/8",
> >> xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> >> > points((1:30)/10, power.cors[5,], pch = 2, col = "green", type = 'b')
> >> > points((1:30)/10, power.cork[5,], pch = 3, col = "blue", type = 'b')
> >> > points((1:30)/10, power.dcor[5,], pch = 4, col = "red", type = 'b')
> >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"),
> >> pch = c(1,2,3), col = c("black","green","blue","red"))
> >> >
> >> > plot((1:30)/10, power.cor[4,], ylim = c(0,1), main = "Sine: period 1/2",
> >> xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> >> > points((1:30)/10, power.cors[4,], pch = 2, col = "green", type = 'b')
> >> > points((1:30)/10, power.cork[4,], pch = 3, col = "blue", type = 'b')
> >> > points((1:30)/10, power.dcor[4,], pch = 4, col = "red", type = 'b')
> >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"),
> >> pch = c(1,2,3), col = c("black","green","blue","red"))
> >> >
> >> > plot((1:30)/10, power.cor[6,], ylim = c(0,1), main = "X^(1/4)", xlab =
> >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> >> > points((1:30)/10, power.cors[6,], pch = 2, col = "green", type = 'b')
> >> > points((1:30)/10, power.cork[6,], pch = 3, col = "blue", type = 'b')
> >> > points((1:30)/10, power.dcor[6,], pch = 4, col = "red", type = 'b')
> >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"),
> >> pch = c(1,2,3), col = c("black","green","blue","red"))
> >> >
> >> > plot((1:30)/10, power.cor[7,], ylim = c(0,1), main = "Circle", xlab =
> >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> >> > points((1:30)/10, power.cors[7,], pch = 2, col = "green", type = 'b')
> >> > points((1:30)/10, power.cork[7,], pch = 3, col = "blue", type = 'b')
> >> > points((1:30)/10, power.dcor[7,], pch = 4, col = "red", type = 'b')
> >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"),
> >> pch = c(1,2,3), col = c("black","green","blue","red"))
> >> >
> >> > plot((1:30)/10, power.cor[8,], ylim = c(0,1), main = "Step function",
> >> xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b')
> >> > points((1:30)/10, power.cors[8,], pch = 2, col = "green", type = 'b')
> >> > points((1:30)/10, power.cork[8,], pch = 3, col = "blue", type = 'b')
> >> > points((1:30)/10, power.dcor[8,], pch = 4, col = "red", type = 'b')
> >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"),
> >> pch = c(1,2,3), col = c("black","green","blue","red"))
> >> >
> >> > #################
> >> >
> >> > ______________________________________________
> >> > R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> >> > https://stat.ethz.ch/mailman/listinfo/r-help
> >> > PLEASE do read the posting guide
> >> http://www.R-project.org/posting-guide.html
> >> > and provide commented, minimal, self-contained, reproducible code.
> >> >
> >>
> >> ______________________________________________
> >> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> >> https://stat.ethz.ch/mailman/listinfo/r-help
> >> PLEASE do read the posting guide
> >> http://www.R-project.org/posting-guide.html
> >> and provide commented, minimal, self-contained, reproducible code.
> >>
> >
> >         [[alternative HTML version deleted]]
>
> >
> >
> > ______________________________________________
> > R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
> >
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



More information about the R-help mailing list