[R] analyzing results from Tuesday's US elections

Bert Gunter bgunter@4567 @end|ng |rom gm@||@com
Tue Nov 10 04:02:01 CET 2020


For those who are interested:

Very nice examples of (static) statistical graphics on election results can
be found here:
https://www.nytimes.com/interactive/2020/11/09/us/arizona-election-battleground-state-counties.html?action=click&module=Spotlight&pgtype=Homepage

Takes multidisciplinary teams and lots of hard work to produce, I would
guess.


Bert Gunter

"The trouble with having an open mind is that people keep coming along and
sticking things into it."
-- Opus (aka Berkeley Breathed in his "Bloom County" comic strip )


On Mon, Nov 9, 2020 at 4:46 PM Abby Spurdle <spurdle.a using gmail.com> wrote:

> RESENT
> INITIAL EMAIL, TOO BIG
> ATTACHMENTS REPLACED WITH LINKS
>
> I created a dataset, linked.
> Had to manually copy and paste from the NY Times website.
>
> > head (data, 3)
>     STATE   EQCOUNTY RMARGIN_2016 RMARGIN_2020 NVOTERS_2020
> SUB_STATEVAL_2016
> 1 Alabama     Mobile         13.3           12       181783
>  0
> 2 Alabama     Dallas        -37.5          -38        17861
>  0
> 3 Alabama Tuscaloosa         19.3           15        89760
>  0
>
> > tail (data, 3)
>        STATE EQCOUNTY RMARGIN_2016 RMARGIN_2020 NVOTERS_2020
> SUB_STATEVAL_2016
> 4248 Wyoming    Uinta         58.5           63         9400
>    0
> 4249 Wyoming Sublette         63.0           62         4970
>    0
> 4250 Wyoming  Johnson         64.3           61         4914
>    0
>
> > head (data [data [,1] == "Alaska",], 3)
>     STATE EQCOUNTY RMARGIN_2016 RMARGIN_2020 NVOTERS_2020 SUB_STATEVAL_2016
> 68 Alaska    ED 40         14.7        -24.0           82                 1
> 69 Alaska    ED 37         14.7         -1.7          173                 1
> 70 Alaska    ED 38         14.7         -0.4          249                 1
>
> EQCounty, is the County or Equivalent.
> Several states, D.C., Alaska, Connecticut, Maine, Massachusetts, Rhode
> Island and Vermont are different.
> RMargin(s) are the republican percentages minus the democrate
> percentages, as 2 or 3 digit numbers between 0 and 100.
> The last column is 0s or 1s, with 1s for Alaska, Connecticut, Maine,
> Massachusetts, Rhode Island and Vermont, where I didn't have the 2016
> margins, so the 2016 margins have been replaced with state-levels
> values.
>
> Then I scaled the margins, based on the number of voters.
> i.e.
> wx2016 <- 1000 * x2016 * nv / max.nv
> (Where x2016 is equal to RMARGIN_2020, and nv is equal to NVOTERS_2020).
>
> There may be a much better way.
>
> And came up the following plots (linked) and output (follows):
>
> ---INPUT---
> PATH = "<PATH TO FILE>"
> data = read.csv (PATH, header=TRUE)
>
> #raw data
> x2016 <- as.numeric (data$RMARGIN_2016)
> x2020 <- as.numeric (data$RMARGIN_2020)
> nv <- as.numeric (data$NVOTERS_2020)
> subs <- as.logical (data$SUB_STATEVAL)
>
> #computed data
> max.nv <- max (nv)
> wx2016 <- 1000 * x2016 * nv / max.nv
> wx2020 <- 1000 * x2020 * nv / max.nv
> diffs <- wx2020 - wx2016
>
> OFFSET <- 500
> p0 <- par (mfrow = c (2, 2) )
>
> #plot 1
> plot (wx2016, wx2020,
> main="All Votes\n(By County, or Equivalent)",
> xlab="Scaled Republican Margin, 2016", ylab="Scaled Republican Margin,
> 2020")
> abline (h=0, v=0, lty=2)
>
> #plot 2
> OFFSET <- 200
> plot (wx2016, wx2020,
> xlim = c (-OFFSET, OFFSET), ylim = c (-OFFSET, OFFSET),
> main="All Votes\n(Zoomed In)",
> xlab="Scaled Republican Margin, 2016", ylab="Scaled Republican Margin,
> 2020")
> abline (h=0, v=0, lty=2)
>
> OFFSET <- 1000
>
> #plot 3
> J1 <- order (diffs, decreasing=TRUE)[1:400]
> plot (wx2016 [J1], wx2020 [J1],
> xlim = c (-OFFSET, OFFSET), ylim = c (-OFFSET, OFFSET),
> main="400 Biggest Shifts Towards Republican",
> xlab="Scaled Republican Margin, 2016", ylab="Scaled Republican Margin,
> 2020")
> abline (h=0, v=0, lty=2)
> abline (a=0, b=1, lty=2)
>
> #plot 4
> J2 <- order (diffs)[1:400]
> plot (wx2016 [J2], wx2020 [J2],
> xlim = c (-OFFSET, OFFSET), ylim = c (-OFFSET, OFFSET),
> main="400 Biggest Shifts Towards Democrat",
> xlab="Scaled Republican Margin, 2016", ylab="Scaled Republican Margin,
> 2020")
> abline (h=0, v=0, lty=2)
> abline (a=0, b=1, lty=2)
>
> par (p0)
>
> #most democrat
> I = order (wx2020)[1:30]
> cbind (data [I,], scaled.dem.vote = -1 * wx2020 [I])
>
> #biggest move toward democrat
> head (cbind (data [J2,], diffs = diffs [J2]), 30)
>
> ---OUTPUT---
> #most democrat
> > cbind (data [I,], scaled.dem.vote = -1 * wx2020 [I])
>               STATE        EQCOUNTY RMARGIN_2016 RMARGIN_2020
> NVOTERS_2020 SUB_STATEVAL_2016 scaled.dem.vote
> 229      California     Los Angeles        -49.3          -44
> 3674850                 0       44000.000
> 769        Illinois            Cook        -53.1          -47
> 1897721                 0       24271.164
> 4073     Washington            King        -48.8          -53
> 1188152                 0       17135.953
> 3092   Pennsylvania    Philadelphia        -67.0          -63
> 701647                 0       12028.725
> 215      California         Alameda        -63.5          -64
> 625710                 0       10897.163
> 227      California     Santa Clara        -52.1          -49
> 726186                 0        9682.875
> 238      California       San Diego        -19.7          -23
> 1546144                 0        9676.942
> 2683       New York        Brooklyn        -62.0          -49
> 693937                 0        9252.871
> 2162      Minnesota        Hennepin        -34.9          -43
> 753716                 0        8819.350
> 2074       Michigan           Wayne        -37.1          -37
> 863382                 0        8692.908
> 2673       New York       Manhattan        -76.9          -70
> 446861                 0        8511.986
> 221      California   San Francisco        -75.2          -73
> 413642                 0        8216.898
> 3495          Texas          Dallas        -26.1          -32
> 920772                 0        8017.934
> 1741       Maryland Prince George's        -79.7          -80
> 365857                 0        7964.559
> 510         Florida         Broward        -34.9          -30
> 959418                 0        7832.303
> 3057         Oregon       Multnomah        -56.3          -61
> 458395                 0        7609.044
> 3563          Texas          Travis        -38.6          -45
> 605034                 0        7408.882
> 565         Georgia          DeKalb        -62.9          -67
> 369341                 0        6733.839
> 3942       Virginia         Fairfax        -35.8          -42
> 578931                 0        6616.624
> 492            D.C.            D.C.        -86.4          -87
> 279152                 0        6608.766
> 562         Georgia          Fulton        -40.9          -46
> 522050                 0        6534.770
> 230      California    Contra Costa        -43.0          -48
> 498340                 0        6509.196
> 2674       New York          Queens        -53.6          -39
> 597928                 0        6345.617
> 257        Colorado          Denver        -54.8          -64
> 350606                 0        6106.041
> 2677       New York           Bronx        -79.1          -66
> 329638                 0        5920.271
> 3530          Texas          Harris        -12.3          -13
> 1633671                 0        5779.208
> 1718       Maryland      Montgomery        -55.4          -57
> 369405                 0        5729.781
> 2888           Ohio        Cuyahoga        -35.2          -34
> 605268                 0        5599.987
> 2745 North Carolina     Mecklenburg        -29.4          -35
> 565980                 0        5390.506
> 2894           Ohio        Franklin        -25.8          -31
> 606022                 0        5112.231
>
> #biggest move toward democrat
> > head (cbind (data [J2,], diffs = diffs [J2]), 30)
>               STATE         EQCOUNTY RMARGIN_2016 RMARGIN_2020
> NVOTERS_2020 SUB_STATEVAL_2016      diffs
> 1751  Massachusetts           Boston        -26.8       -67.00
> 273133                 1 -2987.8625
> 113         Arizona         Maricopa          2.8        -2.00
> 2046295                 0 -2672.8209
> 3531          Texas          Tarrant          8.6        -0.16
> 830104                 0 -1978.7776
> 2162      Minnesota         Hennepin        -34.9       -43.00
> 753716                 0 -1661.3194
> 3564          Texas           Collin         16.7         5.00
> 486917                 0 -1550.2480
> 3495          Texas           Dallas        -26.1       -32.00
> 920772                 0 -1478.3065
> 238      California        San Diego        -19.7       -23.00
> 1546144                 0 -1388.4309
> 563         Georgia         Gwinnett         -5.8       -18.00
> 413166                 0 -1371.6547
> 3565          Texas           Denton         20.0         8.00
> 416610                 0 -1360.4147
> 4073     Washington             King        -48.8       -53.00
> 1188152                 0 -1357.9434
> 564         Georgia             Cobb         -2.2       -14.00
> 393340                 0 -1263.0208
> 2075       Michigan          Oakland         -8.1       -14.00
> 778418                 0 -1249.7561
> 291        Colorado        Jefferson         -6.9       -19.00
> 376430                 0 -1239.4528
> 292        Colorado          El Paso         22.3        11.00
> 375058                 0 -1153.2866
> 2321       Missouri St. Louis County        -16.2       -24.00
> 528107                 0 -1120.9259
> 3563          Texas           Travis        -38.6       -45.00
> 605034                 0 -1053.7077
> 277        Colorado         Arapahoe        -14.1       -25.00
> 346740                 0 -1028.4681
> 2744 North Carolina             Wake        -20.2       -26.00
> 624049                 0  -984.9339
> 3942       Virginia          Fairfax        -35.8       -42.00
> 578931                 0  -976.7398
> 1116         Kansas          Johnson          2.6        -8.00
> 338343                 0  -975.9407
> 3562          Texas            Bexar        -13.4       -18.00
> 757667                 0  -948.4110
> 2077       Michigan             Kent          3.1        -6.00
> 359915                 0  -891.2545
> 257        Colorado           Denver        -54.8       -64.00
> 350606                 0  -877.7434
> 110         Arizona             Pima        -13.6       -20.00
> 501058                 0  -872.6264
> 2625     New Jersey         Monmouth          9.3        -1.60
> 292654                 0  -868.0432
> 2745 North Carolina      Mecklenburg        -29.4       -35.00
> 565980                 0  -862.4809
> 3567          Texas       Williamson          9.7        -1.30
> 287696                 0  -861.1660
> 2894           Ohio         Franklin        -25.8       -31.00
> 606022                 0  -857.5355
> 203      California        Riverside         -5.4       -11.00
> 558759                 0  -851.4770
> 3966       Virginia   Virginia Beach          3.5        -8.00
> 253477                 0  -793.2257
>
> DISCLAIMER:
> I can not guarantee the accuracy of this data, or any conclusions.
>
> NOTE:
> Reiterating, several states used state-level values for 2016.
> (So, the Boston value above, may be off).
>
> Monospaced fonts are required for reading the contents of this email.
>
> LINKS:
>
> https://sites.google.com/site/spurdlea/temp_election
>
> https://sites.google.com/site/spurdlea/exts/election_data.txt
>

	[[alternative HTML version deleted]]



More information about the R-help mailing list