[R] making code (loop) more efficient
Jim Lemon
drj|m|emon @end|ng |rom gm@||@com
Wed Dec 16 06:44:48 CET 2020
Hi Ana,
Back on the job. I'm not sure how this will work in your setup, but
here is a try:
a<-read.table(text="top1 blup lasso enet
rs4980905:184404:C:A 0.07692622 -1.881795e-04 0 0
rs7978751:187541:G:C 0.62411425 9.934994e-04 0 0
rs2368831:188285:C:T 0.69529158 1.211028e-03 0 0
rs12830904:188335:T:A 0.92793158 -9.143555e-05 0 0
rs1500098:189093:G:C 0.42032471 9.001814e-04 0 0
rs79410690:190097:G:A 0.26194244 5.019037e-04 0 0",
header=TRUE,stringsAsFactors=FALSE)
namesplit<-strsplit(rownames(a),":")
rsid<-unlist(lapply(namesplit,"[",1))
ref_allele<-unlist(lapply(namesplit,"[",3))
eff_allele<-unlist(lapply(namesplit,"[",4))
# here I'm assuming that the filename
# is stored in files[i]
files<-"retina.ENSG00000135776.wgt.RDat"
i<-1
WGT<-rep(files[i],length(rsid))
data<-data.frame(rsid=rsid,weight=a$top1,
ref_allele=ref_allele,eff_allele,WGT=WGT)
data
Note that the output is a data frame, not a data table. I hope that
the function for creating a data table is close enough to that for a
data frame for you to work it out. If not I can probably have a look
at it a bit later.
Jim
On Wed, Dec 16, 2020 at 1:45 PM Ana Marija <sokovic.anamarija using gmail.com> wrote:
>
> Hi Jim,
>
> as always you're completely right, this is what is happening:
>
> > head(a)
> top1 blup lasso enet
> rs4980905:184404:C:A 0.07692622 -1.881795e-04 0 0
> rs7978751:187541:G:C 0.62411425 9.934994e-04 0 0
> rs2368831:188285:C:T 0.69529158 1.211028e-03 0 0
> rs12830904:188335:T:A 0.92793158 -9.143555e-05 0 0
> rs1500098:189093:G:C 0.42032471 9.001814e-04 0 0
> rs79410690:190097:G:A 0.26194244 5.019037e-04 0 0
> > names <- rownames(a)
> > data <- data.table(names, a["blup"])
> > head(data)
> names V2
> 1: rs4980905:184404:C:A NA
> 2: rs7978751:187541:G:C NA
> 3: rs2368831:188285:C:T NA
> 4: rs12830904:188335:T:A NA
> 5: rs1500098:189093:G:C NA
> 6: rs79410690:190097:G:A NA
>
> So my goal is to transform what is in "a" to this for every RDat file:
>
> rsid weight ref_allele eff_allele
> 1: rs72763981 9.376766e-09 C G
> 2: rs144383755 -2.093346e-09 A G
> 3: rs1925717 1.511376e-08 T C
> 4: rs61827307 -1.625302e-08 C A
> 5: rs61827308 -1.625302e-08 G C
> 6: rs199623136 -9.128354e-10 GC G
> WGT
> 1: retina.ENSG00000135776.wgt.RDat
> 2: retina.ENSG00000135776.wgt.RDat
> 3: retina.ENSG00000135776.wgt.RDat
> 4: retina.ENSG00000135776.wgt.RDat
> 5: retina.ENSG00000135776.wgt.RDat
> 6: retina.ENSG00000135776.wgt.RDat
>
> so from rs4980905:184404:C:A I would take rs4980905 to be in column
> "rsid", C in column "ref_allele" and A to be in column "eff_allele",
> WGT column would just be filled with a name of the particular RDat
> file.
>
> So the issue is in these lines:
>
> a <- get(load(files[i]))
> names <- rownames(a)
> data <- data.table(names, a["blup"])
> nm1 <- c("rsid", "ref_allele", "eff_allele")
>
> any idea how I can rewrite this?
>
>
>
> On Tue, Dec 15, 2020 at 8:30 PM Jim Lemon <drjimlemon using gmail.com> wrote:
> >
> > Hi Ana,
> > I would look at "data" in your second example and see if it contains a
> > column named "blup" or just the values that were extracted from
> > a$blup. Also, I assume that weight=blup looks for an object named
> > "blup", which may not be there.
> >
> > Jim
> >
> > On Wed, Dec 16, 2020 at 1:20 PM Ana Marija <sokovic.anamarija using gmail.com> wrote:
> > >
> > > Hi Jim,
> > >
> > > Maybe my post is confusing.
> > >
> > > so "dd" came from my slow code and I don't use it again in parallelized code.
> > >
> > > So for example for one of my files:
> > >
> > > if
> > > i="retina.ENSG00000120647.wgt.RDat"
> > > > a <- get(load(i))
> > > > head(a)
> > > top1 blup lasso enet
> > > rs4980905:184404:C:A 0.07692622 -1.881795e-04 0 0
> > > rs7978751:187541:G:C 0.62411425 9.934994e-04 0 0
> > > rs2368831:188285:C:T 0.69529158 1.211028e-03 0 0
> > > ...
> > >
> > > Slow code was posted just to show what was running very slow and it
> > > was running. I really need help fixing parallelized version.
> > >
> > > On Tue, Dec 15, 2020 at 7:35 PM Jim Lemon <drjimlemon using gmail.com> wrote:
> > > >
> > > > Hi Ana,
> > > > My guess is that in your second code fragment you are assigning the
> > > > rownames of "a" and the _values_ contained in a$blup to the data.table
> > > > "data". As I don't have much experience with data tables I may be
> > > > wrong, but I suspect that the column name "blup" may not be visible or
> > > > even present in "data". I don't see it in "dd" above this code
> > > > fragment.
> > > >
> > > > Jim
> > > >
> > > > On Wed, Dec 16, 2020 at 11:12 AM Ana Marija <sokovic.anamarija using gmail.com> wrote:
> > > > >
> > > > > Hello,
> > > > >
> > > > > I made a terribly inefficient code which runs forever but it does run.
> > > > >
> > > > > library(dplyr)
> > > > > library(splitstackshape)
> > > > >
> > > > > datalist = list()
> > > > > files <- list.files("/WEIGHTS1/Retina", pattern=".RDat", ignore.case=T)
> > > > >
> > > > > for(i in files)
> > > > > {
> > > > > a<-get(load(i))
> > > > > names <- rownames(a)
> > > > > data <- as.data.frame(cbind(names,a))
> > > > > rownames(data) <- NULL
> > > > > dd=na.omit(concat.split.multiple(data = data, split.cols = c("names"),
> > > > > seps = ":"))
> > > > > dd=select(dd,names_1,blup,names_3,names_4)
> > > > > colnames(dd)=c("rsid","weight","ref_allele","eff_allele")
> > > > > dd$WGT<-i
> > > > > datalist[[i]] <- dd # add it to your list
> > > > > }
> > > > >
> > > > > big_data = do.call(rbind, datalist)
> > > > >
> > > > > There is 17345 RDat files this loop has to go through. And each file
> > > > > has approximately 10,000 lines. All RDat files can be downloaded from
> > > > > here: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115828 and
> > > > > they are compressed in this file: GSE115828_retina_TWAS_wgts.tar.gz .
> > > > > And subset of 3 of those .RDat files is here:
> > > > > https://github.com/montenegrina/sample
> > > > >
> > > > > For one of those files, say i="retina.ENSG00000135776.wgt.RDat"
> > > > > dd looks like this:
> > > > >
> > > > > > head(dd)
> > > > > rsid weight ref_allele eff_allele
> > > > > 1: rs72763981 9.376766e-09 C G
> > > > > 2: rs144383755 -2.093346e-09 A G
> > > > > 3: rs1925717 1.511376e-08 T C
> > > > > 4: rs61827307 -1.625302e-08 C A
> > > > > 5: rs61827308 -1.625302e-08 G C
> > > > > 6: rs199623136 -9.128354e-10 GC G
> > > > > WGT
> > > > > 1: retina.ENSG00000135776.wgt.RDat
> > > > > 2: retina.ENSG00000135776.wgt.RDat
> > > > > 3: retina.ENSG00000135776.wgt.RDat
> > > > > 4: retina.ENSG00000135776.wgt.RDat
> > > > > 5: retina.ENSG00000135776.wgt.RDat
> > > > > 6: retina.ENSG00000135776.wgt.RDat
> > > > >
> > > > > so on attempt to parallelize this I did this:
> > > > >
> > > > > library(parallel)
> > > > > library(data.table)
> > > > > library(foreach)
> > > > > library(doSNOW)
> > > > >
> > > > > n <- parallel::detectCores()
> > > > > cl <- parallel::makeCluster(n, type = "SOCK")
> > > > > doSNOW::registerDoSNOW(cl)
> > > > > files <- list.files("/WEIGHTS1/Retina", pattern=".RDat", ignore.case=T)
> > > > >
> > > > > lst_out <- foreach::foreach(i = seq_along(files),
> > > > > .packages = c("data.table") ) %dopar% {
> > > > >
> > > > > a <- get(load(files[i]))
> > > > > names <- rownames(a)
> > > > > data <- data.table(names, a["blup"])
> > > > > nm1 <- c("rsid", "ref_allele", "eff_allele")
> > > > > data[, (nm1) := tstrsplit(names, ":")[-2]]
> > > > > return(data[, .(rsid, weight = blup, ref_allele, eff_allele)][,
> > > > > WGT := files[i]][])
> > > > > }
> > > > > parallel::stopCluster(cl)
> > > > >
> > > > > big_data <- rbindlist(lst_out)
> > > > >
> > > > > I am getting this Error:
> > > > >
> > > > > Error in { : task 7 failed - "object 'blup' not found"
> > > > > > parallel::stopCluster(cl)
> > > > >
> > > > > Can you please advise,
> > > > > Ana
> > > > >
> > > > > ______________________________________________
> > > > > R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> > > > > https://stat.ethz.ch/mailman/listinfo/r-help
> > > > > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> > > > > and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list