[R] Calculating effectsize or standarized coefficents for gls models in R
Ganjeh, Parisa
p@r|@@@g@njeh @end|ng |rom med@un|-goett|ngen@de
Wed Aug 12 11:11:46 CEST 2020
Hi,
I am new in R and I would appreciate if you guide me how I can estimate effect size or standardized coefficients for a gls model (generalized least square) in R. if I can find the way for estimating standardized coefficients is better, because I used effect size package for other models (glm) in my study and got a standardized coefficients as effect size. Unfortunately this package could not give a standardized coefficients or another effect size estimator for gls model. As far as I have searched I could not find a formula in R for calculating effect size or standardized coefficients for my gls model.
My model :
Model1<-gls(Ehyp1~Sex1+SESc1+Ebmi1+Age1+PA1,weights=varIdent(form =~1|PA1), data =X6_17_years_Wave1, na.action = na.exclude)
PA1 is independent variable and categorical and has 3 levels.
Sex1+SESc1+Ebmi1+Age1: consider as covariates
Sex1 is nominal and has 2 groups (girl and boy).
It is the result of R for my gls model:
Generalized least squares fit by REML
Model: Ehyp1 ~ Sex1 + SESc1 + Ebmi1 + Age1 + PA1
Data: X6_17_years_Wave1
AIC BIC logLik
27156.95 27224.53 -13568.48
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | PA1
Parameter estimates:
3 1 2
1.0000000 0.9268285 0.9310299
Coefficients:
Value Std.Error t-value p-value
(Intercept) 5.957760 0.19569967 30.443382 0.0000
Sex12 -0.832327 0.05159467 -16.132034 0.0000
SESc1 -0.099512 0.00727373 -13.681054 0.0000
Ebmi1 0.021064 0.00837363 2.515553 0.0119
Age1 -0.134280 0.00983979 -13.646654 0.0000
PA12 -0.192089 0.06553337 -2.931163 0.0034
PA13 -0.137575 0.07748981 -1.775395 0.0759
Correlation:
(Intr) Sex12 SESc1 Ebmi1 Age1 PA12
Sex12 -0.203
SESc1 -0.572 -0.017
Ebmi1 -0.578 0.053 0.145
Age1 -0.230 0.001 -0.001 -0.504
PA12 -0.267 0.116 -0.089 0.005 0.086
PA13 -0.339 0.138 -0.038 0.028 0.179 0.621
Standardized residuals:
Min Q1 Med Q3 Max
-2.34330971 -0.76897681 -0.07360691 0.62658220 3.13138556
Residual standard error: 2.146151
Degrees of freedom: 6363 total; 6356 residual
[[alternative HTML version deleted]]
More information about the R-help
mailing list