[R] cumulative data monthly

Rui Barradas ru|pb@rr@d@@ @end|ng |rom @@po@pt
Mon Jan 28 09:33:45 CET 2019


Hello,

With on«bjects of class "Date" or "POSIXt", POSIXct" you can do

lubridate::year(date_obj)

to extract the year. Then aggregate by it.

Hope this helps,

Rui Barradas

Às 08:25 de 28/01/2019, Diego Avesani escreveu:
> Dear Jeff, Dear Rui, Dear all,
> 
> Forget about the monthly things. I was trying to do two things at the 
> same time.
> I try to explain myself. Thanks for your time and I really appreciate 
> your help.
> 
> I have  a long file with hourly precipitation from 2000 to 2018. I would 
> like to select only on e year or even half of a year and plot the 
> cumulative precipitation of it in order to compare it with the 
> simulation data that I have.
> 
> So far I was able only to read all the file:
> dati <- read.csv(file="116.txt", header=FALSE, sep="," , 
> na.strings="-999",skip = 6)
> 
> and to plot the entire cumulative:
> P <- cumsum(dati$PREC)
> plot(dati$DATAORA, P)
> 
> How can I choose only, for example, 2013 in order to have P?
> thanks again
> 
> 
> Diego
> 
> 
> 
> On Mon, 28 Jan 2019 at 02:36, Jeff Newmiller <jdnewmil using dcn.davis.ca.us 
> <mailto:jdnewmil using dcn.davis.ca.us>> wrote:
> 
>     I have no idea what you mean when you say "select starting date and
>     ending
>     date properly form [sic] datai$DATA". For one thing there is no column
>     called DATA, and for another I don't know what starting dates and
>     ending
>     dates you might be interested in. If you need help to subset by time,
>     perhaps you should ask a question about that instead.
> 
>     Here is a reproducible example of making monthly data and
>     manipulating it
>     using artificial data:
> 
>     ###############
>     library(zoo)
>     Sys.setenv( TZ = "GMT" )
>     set.seed(42)
>     dati <- data.frame( DATAORA = as.POSIXct( "2012-01-01" )
>                                   + as.difftime( seq( 0, 365*3*24
>                                                ), units="hours" )
>                         )
>     # terrible simulation of precipitation
>     dati$PREC <- 0.1 * trunc( 50 * rbeta( nrow( dati ), 1, 80 ) )
>     dati$ym <- as.yearmon( dati$DATAORA )
>     # aggregate usually reduces the number of rows given to it
>     datim <- aggregate( list( PREC = dati$PREC ) # data to summarize
>                         , dati[ , "ym", drop=FALSE ] # columns to group on
>                         , FUN = sum  # calculation on data
>                         )
>     plot(PREC ~ ym, data=datim) # This is how I would usually look at it
>     as.year <- function(x) floor( as.numeric( x ) ) # from help file on
>     as.yearmon
>     datim$y <- as.year( datim$ym )
>     # ave typically does not change the number of rows given to it
>     datim$PMES <- ave( datim$PREC, datim$y, FUN = cumsum)
>     plot(PMES ~ ym, data=datim) # My guess as to what you asked for?
>     ###############
> 
>     On Sun, 27 Jan 2019, Diego Avesani wrote:
> 
>      > Dear  Jeff, Dear Rui, Dear all,
>      >
>      > I will try Rui's solution as soon as possible.
>      > If I could ask:
>      > As a first step, I would like to follow Jeff's suggestion. I will
>     represent the precipitation data with a cumulative
>      > distribution, one for each year.
>      > This follow that I would like to select the starting date and the
>     ending date properly form dati$DATA in order to
>      > perform the cumulative function.
>      >
>      > Could you help me on that.
>      >
>      > Again, really really thanks
>      >
>      > Diego
>      >
>      >
>      >
>      > On Sun, 27 Jan 2019 at 21:37, Jeff Newmiller
>     <jdnewmil using dcn.davis.ca.us <mailto:jdnewmil using dcn.davis.ca.us>> wrote:
>      >       Very succinct, Rui!
>      >
>      >       One warning to Diego.... automatic data recorders tend to
>     use the local standard timezone year-round. R by
>      >       default assumes that timestamps converted from character to
>     POSIXct using the current timezone on your
>      >       computer... which may not be in the same zone that the
>     logger was in but even more commonly the computer
>      >       follows daylight savings time. This leads to NAs showing up
>     in your converted timestamps in spring and
>      >       duplicated values in autumn as the data are misinterpreted.
>     The easiest solution can be to use
>      >
>      >       Sys.setenv( TZ="GMT" )
>      >
>      >       though if you need the actual timezone you can use a zone
>     name of the form "Etc/GMT+5" (5 hrs west of GMT).
>      >
>      >       Note that Rui's solution will only work correctly near the
>     month transition if you pretend the data timezone
>      >       is GMT or UTC. (Technically these are different so your
>     mileage may vary but most implementations treat them
>      >       as identical and I have not encountered any cases where
>     they differ.)
>      >
>      >       On January 27, 2019 10:03:44 AM PST, Rui Barradas
>     <ruipbarradas using sapo.pt <mailto:ruipbarradas using sapo.pt>> wrote:
>      >       >Hello,
>      >       >
>      >       >See if the following can get you started.
>      >       >It uses package CRAN zoo, function as.yearmon.
>      >       >
>      >       >dati$MES <- zoo::as.yearmon(dati$DATAORA)
>      >       >PMES <- ave(dati$PREC, dati$MES, FUN = cumsum)
>      >       >
>      >       >plot(dati$DATAORA, PMES)
>      >       >
>      >       >
>      >       >Hope this helps,
>      >       >
>      >       >Rui Barradas
>      >       >
>      >       >?s 15:25 de 27/01/2019, Diego Avesani escreveu:
>      >       >> Dear all,
>      >       >>
>      >       >> I have a set of data with has hourly value:
>      >       >>
>      >       >> # ID
>      >       >> # Lo
>      >       >> # L
>      >       >> # Q
>      >       >> Time,    T, RH,PSFC,DIR,VEL10, PREC, RAD, CC,FOG
>      >       >> yyyy-mm-dd hh:mm,   ?C,  %, hPa, ?N,  m/s, mm/h,W/m?,  %,-
>      >       >> 2012-01-01 06:00, -0.1,100, 815,313,  2.6,  0.0,   0,  0,0
>      >       >> 2012-01-01 07:00, -1.2, 93, 814,314,  4.8,  0.0,   0,  0,0
>      >       >> 2012-01-01 08:00,  1.7, 68, 815,308,  7.5,  0.0,  41, 11,0
>      >       >> 2012-01-01 09:00,  2.4, 65, 815,308,  7.4,  0.0, 150, 33,0
>      >       >> .....
>      >       >> .....
>      >       >>
>      >       >> I was able to read it,  create my-own data frame and to
>     plot the
>      >       >total
>      >       >> cumulative function.
>      >       >> This is basically what I have done:
>      >       >>
>      >       >> dati <- read.csv(file="116.txt", header=FALSE, sep="," ,
>      >       >> na.strings="-999",skip = 6)
>      >       >> colnames(dati)=c("DATAORA","T",
>     "RH","PSFC","DIR","VEL10", "PREC",
>      >       >"RAD",
>      >       >> "CC","FOG")
>      >       >>
>      >       >>
>     dati$DATAORA<-as.POSIXct(strptime(dati$DATAORA,format="%Y-%m-%d
>      >       >%H:%M"))
>      >       >>
>      >       >>
>      >       >> P <- cumsum(dati$PREC)
>      >       >> plot(dati$DATAORA, P)
>      >       >>
>      >       >> I would like to select the data according to an starting
>     and ending
>      >       >date.
>      >       >> In addition, I would like to plot the monthly and not
>     the total one.
>      >       >> I mean, I would like to have a cumulative plot for each
>     month of the
>      >       >> selected year.
>      >       >>
>      >       >> I am struggling with "ddply" but probably it is the
>     wrong way.
>      >       >>
>      >       >> Could someone help me?  Really Really thanks,
>      >       >>
>      >       >>
>      >       >> Diego
>      >       >>
>      >       >>      [[alternative HTML version deleted]]
>      >       >>
>      >       >> ______________________________________________
>      >       >> R-help using r-project.org <mailto:R-help using r-project.org>
>     mailing list -- To UNSUBSCRIBE and more, see
>      >       >> https://stat.ethz.ch/mailman/listinfo/r-help
>      >       >> PLEASE do read the posting guide
>      >       >http://www.R-project.org/posting-guide.html
>      >       >> and provide commented, minimal, self-contained,
>     reproducible code.
>      >       >>
>      >       >
>      >       >______________________________________________
>      >       >R-help using r-project.org <mailto:R-help using r-project.org> mailing
>     list -- To UNSUBSCRIBE and more, see
>      >       >https://stat.ethz.ch/mailman/listinfo/r-help
>      >       >PLEASE do read the posting guide
>      >       >http://www.R-project.org/posting-guide.html
>      >       >and provide commented, minimal, self-contained,
>     reproducible code.
>      >
>      >       --
>      >       Sent from my phone. Please excuse my brevity.
>      >
>      >
>      >
> 
>     ---------------------------------------------------------------------------
>     Jeff Newmiller                        The     .....       .....  Go
>     Live...
>     DCN:<jdnewmil using dcn.davis.ca.us <mailto:jdnewmil using dcn.davis.ca.us>>   
>          Basics: ##.#.       ##.#.  Live Go...
>                                             Live:   OO#.. Dead: OO#.. 
>     Playing
>     Research Engineer (Solar/Batteries            O.O#.       #.O#.  with
>     /Software/Embedded Controllers)               .OO#.       .OO#. 
>     rocks...1k
>     ---------------------------------------------------------------------------
>



More information about the R-help mailing list