[R] faster execution of for loop in Fishers test
peter dalgaard
pd@|gd @end|ng |rom gm@||@com
Tue Feb 12 13:10:53 CET 2019
> On 12 Feb 2019, at 02:45 , Bert Gunter <bgunter.4567 using gmail.com> wrote:
>
> 1. I believe Fisher's exact test is computationally intensive and takes a
> lot of time for large structures, so I would say what you see is what you
> should expect! (As I'm not an expert on this, confirmation or contradiction
> by those who are would be appreciated).
>
As I read it, it is mainly 24776 * 12913 = "a lot" of 3x2 tables (320 million of them). Fisher.test has a fair amount of red-tape overhead, so brute force would take a while.
Some observations: All tables have a total of 76, so there is only a limited number of possible tables (but will kx always have only three possible values?), so there could be scope for using lookup tables. Also, if it is always 3x2, I think simulation is slower than exact computation.
-pd
> 2. Your second question on how to select results based on values in another
> vector/column is very basic R. So it appears that you need to spend some
> time with an R tutorial or two to learn the basics (unless I have
> misinterpreted).
>
> 3. Please do not repost further. No one is obligated to respond to your
> posts. Following the posting guide, which you appear to have done,
> increases the likelihood, but is of course no guarantee.
>
> Cheers,
> Bert
>
>
> Bert Gunter
>
> "The trouble with having an open mind is that people keep coming along and
> sticking things into it."
> -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip )
>
>
> On Mon, Feb 11, 2019 at 5:28 PM Adrian Johnson <oriolebaltimore using gmail.com>
> wrote:
>
>> Dear group,
>>
>> I have two large matrices.
>>
>> Matrix one: is 24776 x 76 (example toy1 dput object given below)
>>
>> Matrix two: is 12913 x 76 (example toy2 dput object given below)
>>
>> Column names of both matrices are identical.
>>
>> My aim is:
>>
>> a. Take each row of toy2 and transform vector into UP (>0) and DN (
>> <0 ) categories. (kc)
>> b Test association between kc and every row of toy1.
>>
>> My code, given below, although this works but is very slow.
>>
>> I gave dput objects for toy1, toy2 and result matrix.
>>
>> Could you suggest/help me how I can make this faster. Also, how can I
>> select values in result column that are less than 0.001 (p < 0.001).
>>
>> Appreciate your help. Thank you.
>> -Adrian
>>
>> Code:
>>
>> ===============================================================================
>>
>>
>>
>> result <- matrix(NA,nrow=nrow(toy1),ncol=nrow(toy2))
>>
>> rownames(result) <- rownames(toy1)
>> colnames(result) <- rownames(toy2)
>>
>> for(i in 1:nrow(toy2)){
>> for(j in 1:nrow(toy1)){
>> kx = toy2[i,]
>> kc <- rep('NC',length(kx))
>> kc[ kx >0] <- 'UP'
>> kc[ kx <=0 ] <- 'DN'
>> xpv <- fisher.test(table(kc,toy1[j,]),simulate.p.value = TRUE)$p.value
>> result[j,i] <- xpv
>> }
>> }
>>
>>
>> ===============================================================================
>>
>>
>>
>> ===============================================================================
>>
>>
>>> dput(toy1)
>> structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1,
>> -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
>> -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
>> -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
>> -1, -1, -1, -1, -1), .Dim = c(10L, 7L), .Dimnames = list(c("ACAP3",
>> "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1",
>> "B3GALT6", "C1orf159"), c("a", "b", "c", "d", "e", "f", "g")))
>>
>>
>>
>>> dput(toy2)
>> structure(c(-0.242891119688613, -0.0514058216682132, 0.138447212993773,
>> -0.312576648033122, 0.271489918720452, -0.281196468299486,
>> -0.0407160143344565,
>> -0.328353812845287, 0.151667836674511, 0.408596843743938,
>> -0.049351944902924,
>> 0.238586287349249, 0.200571558784821, -0.0737604184858411,
>> 0.245971526254877,
>> 0.24740263959845, -0.161528943131908, 0.197521973013793,
>> 0.0402668125708444,
>> 0.376323735212088, 0.0731550871764204, 0.385270176969893, 0.28953042756208,
>> 0.062587289401188, -0.281187168932979, -0.0202298984561554,
>> -0.0848696970309447,
>> 0.0349676726358973, -0.520484215644868, -0.481991414222996,
>> -0.00698099201388211,
>> 0.135503878341873, 0.156983081312087, 0.320223832092661, 0.34582193394074,
>> 0.0844455960468667, -0.157825604090972, 0.204758250510969,
>> 0.261796072978612,
>> -0.19510450641405, 0.43196474472874, -0.211155577453175,
>> -0.0921641871215187,
>> 0.420950361292263, 0.390261862151936, -0.422273930504427,
>> 0.344653684951627,
>> 0.0378273248838503, 0.197782027324611, 0.0963124876309569,
>> 0.332093167080656,
>> 0.128036554821915, -0.41338065859335, -0.409470440033177,
>> 0.371490567256253,
>> -0.0912549189140141, -0.247451812684234, 0.127741739114639,
>> 0.0856254238844557,
>> 0.515282940316031, -0.25675759521248, 0.333943163209869, 0.604141413840881,
>> 0.0824942299510931, -0.179605710473021, -0.275604207054643,
>> -0.113251154591898,
>> 0.172897837449258, -0.329808795076691, -0.239255324324506), .Dim = c(10L,
>> 7L), .Dimnames = list(c("chr5q23", "chr16q24", "chr8q24", "chr13q11",
>> "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21"
>> ), c("a", "b", "c", "d", "e", "f", "g")))
>>>
>>
>>
>>> dput(result)
>> structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.532733633183408,
>> 0.511244377811094, 0.528235882058971, 0.526736631684158, 0.51424287856072,
>> 0.530734632683658, 0.513243378310845, 0.533233383308346, 0.542228885557221,
>> 0.517241379310345, 0.532733633183408, 0.521739130434783, 0.529235382308846,
>> 0.530234882558721, 0.548725637181409, 0.525737131434283, 0.527236381809095,
>> 0.532733633183408, 0.530234882558721, 0.520739630184908, 0.15592203898051,
>> 0.142928535732134, 0.140929535232384, 0.150924537731134, 0.160419790104948,
>> 0.139430284857571, 0.152923538230885, 0.146426786606697, 0.149425287356322,
>> 0.145427286356822, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
>> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.282358820589705,
>> 0.293853073463268, 0.262868565717141, 0.290854572713643, 0.276861569215392,
>> 0.288855572213893, 0.282358820589705, 0.292853573213393, 0.286356821589205,
>> 0.271364317841079, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
>> 1, 1, 1, 1, 1, 1), .Dim = c(10L, 10L), .Dimnames = list(c("ACAP3",
>> "ACTRT2", "AGRN", "ANKRD65", "ATAD3A", "ATAD3B", "ATAD3C", "AURKAIP1",
>> "B3GALT6", "C1orf159"), c("chr5q23", "chr16q24", "chr8q24", "chr13q11",
>> "chr7p21", "chr10q23", "chr13q13", "chr10q21", "chr1p13", "chrxp21"
>> )))
>>
>> ______________________________________________
>> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
--
Peter Dalgaard, Professor,
Center for Statistics, Copenhagen Business School
Solbjerg Plads 3, 2000 Frederiksberg, Denmark
Phone: (+45)38153501
Office: A 4.23
Email: pd.mes using cbs.dk Priv: PDalgd using gmail.com
More information about the R-help
mailing list