[R] Bootstrapped CIs of MSE for (G)AM model
varin sacha
v@rin@@ch@ @ending from y@hoo@fr
Thu Nov 22 21:36:18 CET 2018
Dear R-experts,
I am trying to get the bootstrapped confidence intervals of Mean squared error (MSE) for a (G)AM model. I get an error message.
Here below the reproducible R code. Many thanks for your response.
####################
install.packages("ISLR")
library(ISLR)
install.packages("mgcv")
library(mgcv)
install.packages("boot")
library(boot)
#MSE calculation
n=dim(Wage)[1]
p=0.667
GAM1<-gam(wage ~education+s(age,bs="ps")+year,data=Wage)
sam=sample(1 :n,floor(p*n),replace=FALSE)
Training =Wage [sam,]
Testing = Wage [-sam,]
ypred=predict(GAM1,newdata=Testing)
y=Testing$wage
MSE = mean((y-ypred)^2)
# Bootstrap 95% CI for MSE
# function to obtain MSE
MSE <- function(formula, data, indices) {
d <- data[indices,] # allows boot to select sample
fit <- gam(formula, data=d)
return(MSE(fit))
} # bootstrapping with 1000 replications
results <- boot(data=Wage, statistic=MSE,
R=1000, formula=gam(wage ~education+s(age,bs="ps")+year,data=Wage)
)
# get 95% confidence intervals
boot.ci(results, type="bca")
##########################
More information about the R-help
mailing list