[R] how to read association of variable in multiple outcomes using MCMCMGLMM
Victor Chikwapulo
victorchikw@pulo @ending from gm@il@com
Wed Nov 14 18:40:39 CET 2018
Dear all,
I am using package MCMCglmm and I would like to request for an
assistant on what
to look in the output which can tell me whether there is
significant association among the three antibody
titers(logiga,logigm,logigg) for example association between antibody
titers and exposure I can look at pMCMC and confidence interval if
pMCMC is less than 0.05 then the association is significant and this
is clearly explained in mcmcglmm course notes but for association between
outcome variables is not clearly stated on how one can tell whether
there is significant association between the outcome variable. Please
help me, I have been looking for this answer on internet for month
now and I tried to simulate the data just to learn the interpretation
but I could not make sense of the output.
here is the model:
m1<- MCMCglmm(cbind(logiga,logigm,logigg) ~1+trait:exposure, random =
~us(trait):ptid,
rcov = ~idh(trait):units, family = c("gaussian",
"gaussian","gaussian"),
data = dat, prior = pri, verbose = FALSE)
summary(m1)
Iterations = 3001:12991
Thinning interval = 10
Sample size = 1000
DIC: 772.0578
G-structure: ~us(trait):ptid
post.mean l-95% CI u-95% CI eff.samp
traitlogiga:traitlogiga.ptid 0.26776 0.14159 0.43126 906.8
traitlogigm:traitlogiga.ptid -0.16155 -0.26484 -0.06026 1000.0
traitlogigg:traitlogiga.ptid -0.01804 -0.09317 0.05087 872.0
traitlogiga:traitlogigm.ptid -0.16155 -0.26484 -0.06026 1000.0
traitlogigm:traitlogigm.ptid 0.34228 0.14773 0.54208 834.4
traitlogigg:traitlogigm.ptid 0.06099 -0.03872 0.16586 855.3
traitlogiga:traitlogigg.ptid -0.01804 -0.09317 0.05087 872.0
traitlogigm:traitlogigg.ptid 0.06099 -0.03872 0.16586 855.3
traitlogigg:traitlogigg.ptid 0.14241 0.08026 0.23024 1000.0
R-structure: ~idh(trait):units
post.mean l-95% CI u-95% CI eff.samp
traitlogiga.units 0.09538 0.07516 0.1181 1000
traitlogigm.units 0.37488 0.28979 0.4623 1000
traitlogigg.units 0.17954 0.13917 0.2199 1126
Location effects: cbind(logiga, logigm, logigg) ~ 1 + trait:exposure
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 1.35329 1.21504 1.48696 799.8 <0.001 ***
traitlogiga:exposure 0.09773 -0.07234 0.30338 1000.0 0.322
traitlogigm:exposure 0.60556 0.26668 0.97050 1000.0 <0.001 ***
traitlogigg:exposure 0.22682 -0.01893 0.49654 1000.0 0.090 .
More information about the R-help
mailing list