[R] Extracting the MAPE value from a fitted Time Series Model
Jeff Newmiller
jdnewm|| @end|ng |rom dcn@d@v|@@c@@u@
Mon Jul 2 22:40:27 CEST 2018
Google offers [1], which probably seems like a vague response but your question omitted a reproducible example and is contaminated by posting in HTML (read the Posting Guide).
[1] https://www.rdocumentation.org/packages/MLmetrics/versions/1.1.1/topics/MAPE
On July 2, 2018 1:22:39 PM PDT, Paul Bernal <paulbernal07 using gmail.com> wrote:
>Dear friends,
>
>I want to extract the MAPE value from a fitted time series model. This
>is
>what I have:
>
>> str(TransitSpline)
>List of 12
> $ method : chr "Cubic Smoothing Spline"
> $ level : num [1:2] 80 95
>$ x : Time-Series [1:385] from 1 to 385: 77 75 85 74
>73
>96 82 90 91 81 ...
> $ series : chr "data$Transits"
>$ mean : Time-Series [1:10, 1] from 386 to 395: 186 178
>170 163 155 ...
> ..- attr(*, "dimnames")=List of 2
> .. ..$ : NULL
> .. ..$ : chr "Series 1"
>$ upper : Time-Series [1:10, 1:2] from 386 to 395: 202
>199
>197 197 197 ...
> ..- attr(*, "dimnames")=List of 2
> .. ..$ : NULL
> .. ..$ : chr [1:2] "Series 1" "Series 2"
>$ lower : Time-Series [1:10, 1:2] from 386 to 395: 171
>158
>144 129 113 ...
> ..- attr(*, "dimnames")=List of 2
> .. ..$ : NULL
> .. ..$ : chr [1:2] "Series 1" "Series 2"
> $ model :List of 2
> ..$ beta: num 6.15
> ..$ call: language splinef(y = data$Transits)
>$ fitted : Time-Series [1:385] from 1 to 385: 76.1 77.3
>78.5
>80.1 82.2 ...
>$ residuals : Time-Series [1:385] from 1 to 385: NA -1.3
>9.49
>-8.64 -4.34 ...
> $ standardizedresiduals: Time-Series [1:385] from 1 to 385: NA -0.875
>6.517 -5.586 -2.736 ...
>$ onestepf : Time-Series [1:385] from 1 to 385: NA 76.3
>75.5
>82.6 77.3 ...
> - attr(*, "class")= chr [1:2] "splineforecast" "forecast"
>
>
>> str(summary(TransitSpline))
>#Here I want to get the value for the MAPE measure
>Forecast method: Cubic Smoothing Spline
>
>Model Information:
>$`beta`
>[1] 6.149167
>
>$call
>splinef(y = data$Transits)
>
>
>Error measures:
> ME RMSE MAE MPE MAPE MASE
> ACF1
>Training set -0.07776434 12.10204 9.003675 -0.2408687 5.377131 0.930913
>-0.2766975
>
>Forecasts:
> Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
>386 186.0153 170.52426 201.5064 162.323777 209.7069
>387 178.2220 157.87687 198.5671 147.106804 209.3372
>388 170.4287 143.80863 197.0487 129.716832 211.1405
>389 162.6353 128.61257 196.6581 110.602006 214.6687
>390 154.8420 112.52646 197.1576 90.125956 219.5581
>391 147.0487 95.66491 198.4324 68.463984 225.6334
>392 139.2553 78.10706 200.4036 45.737114 232.7736
>393 131.4620 59.92462 202.9994 22.055013 240.8690
>394 123.6687 41.14798 206.1894 -2.535833 249.8732
>395 115.8753 21.82457 209.9261 -27.962900 259.7136
>'data.frame': 10 obs. of 5 variables:
> $ Point Forecast: num 186 178 170 163 155 ...
> $ Lo 80 : num 171 158 144 129 113 ...
> $ Hi 80 : num 202 199 197 197 197 ...
> $ Lo 95 : num 162.3 147.1 129.7 110.6 90.1 ...
> $ Hi 95 : num 210 209 211 215 220 ...
>
>any idea on how to accomplish this?
>
>Best regards,
>
>Paul
>
> [[alternative HTML version deleted]]
>
>______________________________________________
>R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
>https://stat.ethz.ch/mailman/listinfo/r-help
>PLEASE do read the posting guide
>http://www.R-project.org/posting-guide.html
>and provide commented, minimal, self-contained, reproducible code.
--
Sent from my phone. Please excuse my brevity.
More information about the R-help
mailing list