[R] Parallel assignments and goto

Bert Gunter bgunter.4567 at gmail.com
Tue Feb 27 17:16:23 CET 2018


No clue, but see ?assign perhaps if you have not done so already.

-- Bert



Bert Gunter

"The trouble with having an open mind is that people keep coming along and
sticking things into it."
-- Opus (aka Berkeley Breathed in his "Bloom County" comic strip )

On Tue, Feb 27, 2018 at 6:51 AM, Thomas Mailund <thomas.mailund at gmail.com>
wrote:

> Interestingly, the <<- operator is also a lot faster than using a
> namespace explicitly, and only slightly slower than using <- with local
> variables, see below. But, surely, both must at some point insert values in
> a given environment — either the local one, for <-, or an enclosing one,
> for <<- — so I guess I am asking if there is a more low-level assignment
> operation I can get my hands on without diving into C?
>
>
> factorial <- function(n, acc = 1) {
>     if (n == 1) acc
>     else factorial(n - 1, n * acc)
> }
>
> factorial_tr_manual <- function (n, acc = 1)
> {
>     repeat {
>         if (n <= 1)
>             return(acc)
>         else {
>             .tailr_n <- n - 1
>             .tailr_acc <- acc * n
>             n <- .tailr_n
>             acc <- .tailr_acc
>             next
>         }
>     }
> }
>
> factorial_tr_automatic_1 <- function(n, acc = 1) {
>     .tailr_n <- n
>     .tailr_acc <- acc
>     callCC(function(escape) {
>         repeat {
>             n <- .tailr_n
>             acc <- .tailr_acc
>             if (n <= 1) {
>                 escape(acc)
>             } else {
>                 .tailr_n <<- n - 1
>                 .tailr_acc <<- n * acc
>             }
>         }
>     })
> }
>
> factorial_tr_automatic_2 <- function(n, acc = 1) {
>     .tailr_env <- rlang::get_env()
>     callCC(function(escape) {
>         repeat {
>             if (n <= 1) {
>                 escape(acc)
>             } else {
>                 .tailr_env$.tailr_n <- n - 1
>                 .tailr_env$.tailr_acc <- n * acc
>                 .tailr_env$n <- .tailr_env$.tailr_n
>                 .tailr_env$acc <- .tailr_env$.tailr_acc
>             }
>         }
>     })
> }
>
> microbenchmark::microbenchmark(factorial(1000),
>                                factorial_tr_manual(1000),
>                                factorial_tr_automatic_1(1000),
>                                factorial_tr_automatic_2(1000))
> Unit: microseconds
>                            expr     min      lq      mean   median
>  uq      max neval
>                 factorial(1000) 884.137 942.060 1076.3949 977.6235
> 1042.5035 2889.779   100
>       factorial_tr_manual(1000) 110.215 116.919  130.2337 118.7350
>  122.7495  255.062   100
>  factorial_tr_automatic_1(1000) 179.897 183.437  212.8879 187.8250
>  195.7670  979.352   100
>  factorial_tr_automatic_2(1000) 508.353 534.328  601.9643 560.7830
>  587.8350 1424.260   100
>
> Cheers
>
> On 26 Feb 2018, 21.12 +0100, Thomas Mailund <thomas.mailund at gmail.com>,
> wrote:
> > Following up on this attempt of implementing the tail-recursion
> optimisation — now that I’ve finally had the chance to look at it again — I
> find that non-local return implemented with callCC doesn’t actually incur
> much overhead once I do it more sensibly. I haven’t found a good way to
> handle parallel assignments that isn’t vastly slower than simply
> introducing extra variables, so I am going with that solution. However, I
> have now run into another problem involving those local variables — and
> assigning to local variables in general.
> >
> > Consider again the factorial function and three different ways of
> implementing it using the tail recursion optimisation:
> >
> > factorial <- function(n, acc = 1) {
> >     if (n == 1) acc
> >     else factorial(n - 1, n * acc)
> > }
> >
> > factorial_tr_manual <- function (n, acc = 1)
> > {
> >     repeat {
> >         if (n <= 1)
> >             return(acc)
> >         else {
> >             .tailr_n <- n - 1
> >             .tailr_acc <- acc * n
> >             n <- .tailr_n
> >             acc <- .tailr_acc
> >             next
> >         }
> >     }
> > }
> >
> > factorial_tr_automatic_1 <- function(n, acc = 1) {
> >     callCC(function(escape) {
> >         repeat {
> >             if (n <= 1) {
> >                 escape(acc)
> >             } else {
> >                 .tailr_n <- n - 1
> >                 .tailr_acc <- n * acc
> >                 n <- .tailr_n
> >                 acc <- .tailr_acc
> >             }
> >         }
> >     })
> > }
> >
> > factorial_tr_automatic_2 <- function(n, acc = 1) {
> >     .tailr_env <- rlang::get_env()
> >     callCC(function(escape) {
> >         repeat {
> >             if (n <= 1) {
> >                 escape(acc)
> >             } else {
> >                 .tailr_env$.tailr_n <- n - 1
> >                 .tailr_env$.tailr_acc <- n * acc
> >                 .tailr_env$n <- .tailr_env$.tailr_n
> >                 .tailr_env$acc <- .tailr_env$.tailr_acc
> >             }
> >         }
> >     })
> > }
> >
> > The factorial_tr_manual function is how I would implement the function
> manually while factorial_tr_automatic_1 is what my package used to come up
> with. It handles non-local returns, because this is something I need in
> general. Finally, factorial_tr_automatic_2 accesses the local variables
> explicitly through the environment, which is what my package currently
> produces.
> >
> > The difference between supporting non-local returns and not is tiny, but
> explicitly accessing variables through their environment costs me about a
> factor of five — something that surprised me.
> >
> > > microbenchmark::microbenchmark(factorial(1000),
> > +                                factorial_tr_manual(1000),
> > +                                factorial_tr_automatic_1(1000),
> > +                                factorial_tr_automatic_2(1000))
> > Unit: microseconds
> >                            expr     min       lq     mean   median
> >                 factorial(1000) 756.357 810.4135 963.1040 856.3315
> >       factorial_tr_manual(1000) 104.838 119.7595 198.7347 129.0870
> >  factorial_tr_automatic_1(1000) 112.354 125.5145 211.6148 135.5255
> >  factorial_tr_automatic_2(1000) 461.015 544.7035 688.5988 565.3240
> >        uq      max neval
> >  945.3110 4149.099   100
> >  136.8200 4190.331   100
> >  152.9625 5944.312   100
> >  600.5235 7798.622   100
> >
> > The simple solution, of course, is to not do that, but then I can’t
> handle expressions inside calls to “with”. And I would really like to,
> because then I can combine tail recursion with pattern matching.
> >
> > I can define linked lists and a length function on them like this:
> >
> > library(pmatch)
> > llist := NIL | CONS(car, cdr : llist)
> >
> > llength <- function(llist, acc = 0) {
> >     cases(llist,
> >           NIL -> acc,
> >           CONS(car, cdr) -> llength(cdr, acc + 1))
> > }
> >
> > The tail-recursion I get out of transforming this function looks like
> this:
> >
> > llength_tr <- function (llist, acc = 0) {
> >     .tailr_env <- rlang::get_env()
> >     callCC(function(escape) {
> >         repeat {
> >             if (!rlang::is_null(..match_env <- test_pattern(llist,
> >                                                             NIL)))
> >                 with(..match_env, escape(acc))
> >
> >             else if (!rlang::is_null(..match_env <-
> >                                      test_pattern(llist, CONS(car,
> cdr))))
> >                 with(..match_env, {
> >                     .tailr_env$.tailr_llist <- cdr
> >                     .tailr_env$.tailr_acc <- acc + 1
> >                     .tailr_env$llist <- .tailr_env$.tailr_llist
> >                     .tailr_env$acc <- .tailr_env$.tailr_acc
> >                 })
> >         }
> >     })
> > }
> >
> > Maybe not the prettiest code, but you are not supposed to actually see
> it, of course.
> >
> > There is not much gain in speed
> >
> > Unit: milliseconds
> >                    expr      min       lq     mean   median       uq
> >     llength(test_llist) 70.74605 76.08734 87.78418 85.81193 94.66378
> >  llength_tr(test_llist) 45.16946 51.56856 59.09306 57.00101 63.07044
> >       max neval
> >  182.4894   100
> >  166.6990   100
> >
> > but you don’t run out of stack space
> >
> > > llength(make_llist(1000))
> > Error: evaluation nested too deeply: infinite recursion /
> options(expressions=)?
> > Error during wrapup: C stack usage  7990648 is too close to the limit
> > > llength_tr(make_llist(1000))
> > [1] 1000
> >
> > I should be able to make the function go faster if I had a faster way of
> handling the variable assignments, but inside “with”, I’m not sure how to
> do that…
> >
> > Any suggestions?
> >
> > Cheers
> >
> > On 11 Feb 2018, 16.48 +0100, Thomas Mailund <thomas.mailund at gmail.com>,
> wrote:
> > > Hi guys,
> > >
> > > I am working on some code for automatically translating recursive
> functions into looping functions to implemented tail-recursion
> optimisations. See https://github.com/mailund/tailr
> > >
> > > As a toy-example, consider the factorial function
> > >
> > > factorial <- function(n, acc = 1) {
> > > if (n <= 1) acc
> > > else factorial(n - 1, acc * n)
> > > }
> > >
> > > I can automatically translate this into the loop-version
> > >
> > > factorial_tr_1 <- function (n, acc = 1)
> > > {
> > > repeat {
> > > if (n <= 1)
> > > return(acc)
> > > else {
> > > .tailr_n <- n - 1
> > > .tailr_acc <- acc * acc
> > > n <- .tailr_n
> > > acc <- .tailr_acc
> > > next
> > > }
> > > }
> > > }
> > >
> > > which will run faster and not have problems with recursion depths.
> However, I’m not entirely happy with this version for two reasons: I am not
> happy with introducing the temporary variables and this rewrite will not
> work if I try to over-scope an evaluation context.
> > >
> > > I have two related questions, one related to parallel assignments —
> i.e. expressions to variables so the expression uses the old variable
> values and not the new values until the assignments are all done — and one
> related to restarting a loop from nested loops or from nested expressions
> in `with` expressions or similar.
> > >
> > > I can implement parallel assignment using something like
> rlang::env_bind:
> > >
> > > factorial_tr_2 <- function (n, acc = 1)
> > > {
> > > .tailr_env <- rlang::get_env()
> > > repeat {
> > > if (n <= 1)
> > > return(acc)
> > > else {
> > > rlang::env_bind(.tailr_env, n = n - 1, acc = acc * n)
> > > next
> > > }
> > > }
> > > }
> > >
> > > This reduces the number of additional variables I need to one, but is
> a couple of orders of magnitude slower than the first version.
> > >
> > > > microbenchmark::microbenchmark(factorial(100),
> > > + factorial_tr_1(100),
> > > + factorial_tr_2(100))
> > > Unit: microseconds
> > > expr min lq mean median uq max neval
> > > factorial(100) 53.978 60.543 77.76203 71.0635 85.947 180.251 100
> > > factorial_tr_1(100) 9.022 9.903 11.52563 11.0430 11.984 28.464 100
> > > factorial_tr_2(100) 5870.565 6109.905 6534.13607 6320.4830 6756.463
> 8177.635 100
> > >
> > >
> > > Is there another way to do parallel assignments that doesn’t cost this
> much in running time?
> > >
> > > My other problem is the use of `next`. I would like to combine
> tail-recursion optimisation with pattern matching as in
> https://github.com/mailund/pmatch where I can, for example, define a
> linked list like this:
> > >
> > > devtools::install_github("mailund/pmatch”)
> > > library(pmatch)
> > > llist := NIL | CONS(car, cdr : llist)
> > >
> > > and define a function for computing the length of a list like this:
> > >
> > > list_length <- function(lst, acc = 0) {
> > > force(acc)
> > > cases(lst,
> > > NIL -> acc,
> > > CONS(car, cdr) -> list_length(cdr, acc + 1))
> > > }
> > >
> > > The `cases` function creates an environment that binds variables in a
> pattern-description that over-scopes the expression to the right of `->`,
> so the recursive call in this example have access to the variables `cdr`
> and `car`.
> > >
> > > I can transform a `cases` call to one that creates the environment
> containing the bound variables and then evaluate this using `eval` or
> `with`, but in either case, a call to `next` will not work in such a
> context. The expression will be evaluated inside `bind` or `with`, and not
> in the `list_lenght` function.
> > >
> > > A version that *will* work, is something like this
> > >
> > > factorial_tr_3 <- function (n, acc = 1)
> > > {
> > > .tailr_env <- rlang::get_env()
> > > .tailr_frame <- rlang::current_frame()
> > > repeat {
> > > if (n <= 1)
> > > rlang::return_from(.tailr_frame, acc)
> > > else {
> > > rlang::env_bind(.tailr_env, n = n - 1, acc = acc * n)
> > > rlang::return_to(.tailr_frame)
> > > }
> > > }
> > > }
> > >
> > > Here, again, for the factorial function since this is easier to follow
> than the list-length function.
> > >
> > > This solution will also work if you return values from inside loops,
> where `next` wouldn’t work either.
> > >
> > > Using `rlang::return_from` and `rlang::return_to` implements the right
> semantics, but costs me another order of magnitude in running time.
> > >
> > > microbenchmark::microbenchmark(factorial(100),
> > > factorial_tr_1(100),
> > > factorial_tr_2(100),
> > > factorial_tr_3(100))
> > > Unit: microseconds
> > > expr min lq mean median uq max neval
> > > factorial(100) 52.479 60.2640 93.43069 67.5130 83.925 2062.481 100
> > > factorial_tr_1(100) 8.875 9.6525 49.19595 10.6945 11.217 3818.823 100
> > > factorial_tr_2(100) 5296.350 5525.0745 5973.77664 5737.8730 6260.128
> 8471.301 100
> > > factorial_tr_3(100) 77554.457 80757.0905 87307.28737 84004.0725
> 89859.169 171039.228 100
> > >
> > > I can live with the “introducing extra variables” solution to parallel
> assignment, and I could hack my way out of using `with` or `bind` in
> rewriting `cases`, but restarting a `repeat` loop would really make for a
> nicer solution. I know that `goto` is considered harmful, but really, in
> this case, it is what I want.
> > >
> > > A `callCC` version also solves the problem
> > >
> > > factorial_tr_4 <- function(n, acc = 1) {
> > > function_body <- function(continuation) {
> > > if (n <= 1) {
> > > continuation(acc)
> > > } else {
> > > continuation(list("continue", n = n - 1, acc = acc * n))
> > > }
> > > }
> > > repeat {
> > > result <- callCC(function_body)
> > > if (is.list(result) && result[[1]] == "continue") {
> > > n <- result$n
> > > acc <- result$acc
> > > next
> > > } else {
> > > return(result)
> > > }
> > > }
> > > }
> > >
> > > But this requires that I know how to distinguish between a valid
> return value and a tag for “next” and is still a lot slower than the `next`
> solution
> > >
> > > microbenchmark::microbenchmark(factorial(100),
> > > factorial_tr_1(100),
> > > factorial_tr_2(100),
> > > factorial_tr_3(100),
> > > factorial_tr_4(100))
> > > Unit: microseconds
> > > expr min lq mean median uq max neval
> > > factorial(100) 54.109 61.8095 81.33167 81.8785 89.748 243.554 100
> > > factorial_tr_1(100) 9.025 9.9035 11.38607 11.1990 12.008 22.375 100
> > > factorial_tr_2(100) 5272.524 5798.3965 6302.40467 6077.7180 6492.959
> 9967.237 100
> > > factorial_tr_3(100) 66186.080 72336.2810 76480.75172 73632.9665
> 75405.054 203785.673 100
> > > factorial_tr_4(100) 270.978 302.7890 337.48763 313.9930 334.096
> 1425.702 100
> > >
> > > I don’t necessarily need the tail-recursion optimisation to be faster
> than the recursive version; just getting out of the problem of too deep
> recursions is a benefit, but I would rather not pay with an order of
> magnitude for it. I could, of course, try to handle cases that works with
> `next` in one way, and other cases using `callCC`, but I feel it should be
> possible with a version that handles all cases the same way.
> > >
> > > Is there any way to achieve this?
> > >
> > > Cheers
> > > Thomas
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
>
>         [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/
> posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

	[[alternative HTML version deleted]]



More information about the R-help mailing list