[R] Optim function returning always initial value for parameter to be optimized
ProfJCNash
profjcnash at gmail.com
Fri Feb 9 15:29:58 CET 2018
Did you check the gradient? I don't think so. It's zero, so of course
you end up where you start.
Try
data.input= data.frame(state1 = (1:500), state2 = (201:700) )
err.th.scalar <- function(threshold, data){
state1 <- data$state1
state2 <- data$state2
op1l <- length(state1)
op2l <- length(state2)
op1.err <- sum(state1 <= threshold)/op1l
op2.err <- sum(state2 >= threshold)/op2l
total.err <- (op1.err + op2.err)
return(total.err)
}
soln <- optim(par = 300, fn=err.th.scalar, data = data.input, method =
"BFGS")
soln
require("numDeriv")
gtest <- grad(err.th.scalar, x=300, data = data.input)
gtest
On 2018-02-09 09:05 AM, BARLAS Marios 247554 wrote:
> data.input= data.frame(state1 = (1:500), state2 = (201:700) )
>
> with data that partially overlap in terms of values.
>
> I want to minimize the assessment error of each state by using this function:
>
> err.th.scalar <- function(threshold, data){
>
> state1 <- data$state1
> state2 <- data$state2
>
> op1l <- length(state1)
> op2l <- length(state2)
>
> op1.err <- sum(state1 <= threshold)/op1l
> op2.err <- sum(state2 >= threshold)/op2l
>
> total.err <- (op1.err + op2.err)
>
> return(total.err)
> }
>
>
> SO I'm trying to minimize the total error. This Total Error should be a U shape essentially.
>
>
> I'm using optim as follows:
>
> optim(par = 300, fn=err.th.scalar, data = data.input, method = "BFGS")
Maybe develop an analytic gradient if it is very small, as the numeric
approximation can then be zero even when the true gradient is not.
JN
More information about the R-help
mailing list