[R] SE for all fixed factor effect in GLMM
Heinz Tuechler
tuechler @ending from gmx@@t
Sun Dec 30 08:58:09 CET 2018
maybe qvcalc https://cran.r-project.org/web/packages/qvcalc/index.html
is useful for you.
Marc Girondot via R-help wrote/hat geschrieben on/am 30.12.2018 05:31:
> Dear members,
>
> Let do a example of simple GLMM with x and G as fixed factors and R as
> random factor:
>
> (note that question is the same with GLM or even LM):
>
> x <- rnorm(100)
> y <- rnorm(100)
> G <- as.factor(sample(c("A", "B", "C", "D"), 100, replace = TRUE))
> R <- as.factor(rep(1:25, 4))
>
> library(lme4)
>
> m <- lmer(y ~ x + G + (1 | R))
> summary(m)$coefficients
>
> I get the fixed effect fit and their SE
>
>> summary(m)$coefficients
> Estimate Std. Error t value
> (Intercept) 0.07264454 0.1952380 0.3720820
> x -0.02519892 0.1238621 -0.2034433
> GB 0.10969225 0.3118371 0.3517614
> GC -0.09771555 0.2705523 -0.3611706
> GD -0.12944760 0.2740012 -0.4724344
>
> The estimate for GA is not shown as it is fixed to 0. Normal, it is the
> reference level.
>
> But is there a way to get SE for GA of is-it non-sense question because
> GA is fixed to 0 ?
>
> ______________
>
> I propose here a solution but I don't know if it is correct. It is based
> on reordering levels and averaging se for all reordering:
>
> G <- relevel(G, "A")
> m <- lmer(y ~ x + G + (1 | R))
> sA <- summary(m)$coefficients
>
> G <- relevel(G, "B")
> m <- lmer(y ~ x + G + (1 | R))
> sB <- summary(m)$coefficients
>
> G <- relevel(G, "C")
> m <- lmer(y ~ x + G + (1 | R))
> sC <- summary(m)$coefficients
>
> G <- relevel(G, "D")
> m <- lmer(y ~ x + G + (1 | R))
> sD <- summary(m)$coefficients
>
> seA <- mean(sB["GA", "Std. Error"], sC["GA", "Std. Error"], sD["GA",
> "Std. Error"])
> seB <- mean(sA["GB", "Std. Error"], sC["GB", "Std. Error"], sD["GB",
> "Std. Error"])
> seC <- mean(sA["GC", "Std. Error"], sB["GC", "Std. Error"], sD["GC",
> "Std. Error"])
> seD <- mean(sA["GD", "Std. Error"], sB["GD", "Std. Error"], sC["GD",
> "Std. Error"])
>
> seA; seB; seC; seD
>
>
> Thanks,
>
> Marc
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
More information about the R-help
mailing list