[R] Reformatting output of Forecasts generated by mlp model
Bert Gunter
bgunter@4567 @ending from gm@il@com
Thu Dec 20 23:37:15 CET 2018
The printed output you have shown is meaningless (and maybe mangled, since
you posted in HTML): it is the result of a call to a print method for the
forecast object. You need to examine that object (e.g. via str()) and/or
the print method to see how to extract the data you want in whatever form
you want them. If these remarks don't make sense to you, I suggest you
spend some time with an R tutorial or two to learn about (S3, I assume)
objects and methods and how R uses these for printing output. The important
point is: what you see in printed output may not at "look like" the
structure of the object from which the output is obtained.
You have also failed to tell us what package(s) you are using, which is
part of the requested minimal info. There appear to be at least two that
seem relevant.
Cheers,
Bert
Bert Gunter
"The trouble with having an open mind is that people keep coming along and
sticking things into it."
-- Opus (aka Berkeley Breathed in his "Bloom County" comic strip )
On Thu, Dec 20, 2018 at 7:12 AM Paul Bernal <paulbernal07 using gmail.com> wrote:
> Dear friends,
>
> Hope you are doing great. I am using the multiple layer perceptron model
> (provided in R´s mlp() function for time series forecasting, but I don´t
> know how to reformat the output forecasts generated.
>
> mydata <- dput(datframe$Transits)
>
> > dput(datframe$Transits)
> c(77L, 75L, 85L, 74L, 73L, 96L, 82L, 90L, 91L, 81L, 81L, 77L,
> 84L, 81L, 82L, 86L, 81L, 81L, 83L, 88L, 88L, 92L, 97L, 89L, 96L,
> 94L, 94L, 95L, 92L, 94L, 95L, 95L, 87L, 102L, 94L, 91L, 93L,
> 86L, 96L, 85L, 81L, 84L, 88L, 91L, 89L, 89L, 93L, 83L, 92L, 92L,
> 76L, 98L, 80L, 95L, 89L, 92L, 96L, 86L, 98L, 84L, 90L, 95L, 90L,
> 99L, 85L, 91L, 90L, 88L, 97L, 93L, 97L, 87L, 92L, 87L, 86L, 85L,
> 82L, 90L, 89L, 101L, 94L, 92L, 109L, 101L, 103L, 96L, 89L, 102L,
> 87L, 101L, 100L, 99L, 101L, 98L, 101L, 90L, 106L, 90L, 99L, 105L,
> 91L, 96L, 91L, 96L, 93L, 101L, 105L, 98L, 110L, 100L, 101L, 106L,
> 99L, 111L, 114L, 112L, 113L, 120L, 105L, 111L, 114L, 111L, 118L,
> 115L, 108L, 120L, 119L, 120L, 118L, 117L, 121L, 111L, 114L, 107L,
> 121L, 109L, 106L, 116L, 105L, 119L, 120L, 123L, 126L, 117L, 127L,
> 128L, 132L, 138L, 120L, 132L, 134L, 136L, 144L, 152L, 155L, 146L,
> 155L, 138L, 141L, 146L, 123L, 133L, 123L, 137L, 133L, 143L, 132L,
> 126L, 134L, 129L, 138L, 134L, 132L, 139L, 130L, 152L, 150L, 153L,
> 161L, 152L, 154L, 154L, 138L, 149L, 137L, 144L, 146L, 152L, 140L,
> 151L, 168L, 148L, 157L, 152L, 153L, 166L, 157L, 156L, 166L, 168L,
> 179L, 188L, 190L, 185L, 184L, 185L, 202L, 191L, 175L, 197L, 187L,
> 195L, 204L, 218L, 220L, 212L, 220L, 211L, 221L, 204L, 196L, 209L,
> 205L, 217L, 211L, 212L, 224L, 206L, 225L, 206L, 219L, 232L, 220L,
> 242L, 241L, 261L, 252L, 261L, 269L, 251L, 264L, 261L, 266L, 274L,
> 236L, 270L, 263L, 276L, 276L, 300L, 303L, 301L, 318L, 294L, 308L,
> 308L, 269L, 303L, 302L, 318L, 282L, 311L, 305L, 304L, 309L, 298L,
> 295L, 295L, 281L, 280L, 287L, 313L, 276L, 296L, 307L, 307L, 309L,
> 287L, 286L, 290L, 261L, 285L, 279L, 286L, 284L, 267L, 271L, 259L,
> 268L, 243L, 242L, 237L, 208L, 250L, 237L, 267L, 257L, 276L, 277L,
> 269L, 282L, 264L, 270L, 270L, 251L, 272L, 271L, 288L, 266L, 283L,
> 266L, 270L, 282L, 272L, 264L, 269L, 253L, 269L, 283L, 288L, 275L,
> 301L, 292L, 283L, 287L, 261L, 265L, 269L, 234L, 251L, 261L, 262L,
> 249L, 256L, 255L, 253L, 253L, 233L, 234L, 235L, 217L, 244L, 232L,
> 261L, 236L, 252L, 242L, 252L, 251L, 230L, 240L, 254L, 226L, 267L,
> 245L, 263L, 261L, 286L, 281L, 265L, 274L, 250L, 260L, 265L, 242L,
> 251L, 249L, 251L, 247L, 248L, 234L, 206L, 219L, 194L, 218L, 209L,
> 192L, 207L, 200L, 208L, 208L, 209L, 213L, 216L, 219L, 195L, 217L,
> 217L, 197L, 210L, 211L, 229L, 232L, 227L, 233L, 217L)
>
> TransitsDat <- ts(mydata, start=(1985,10), end=c(2018,9), frequency=12)
>
> Model <- mlp(TransitsDat)
>
> ModelForecasts <- forecast(Model, h=10)
>
> And the output I get is this:
>
> Jan Feb Mar Apr May
> Jun Jul Aug Sep Oct Nov Dec
> 2018
> 224.9970134 221.7932717 220.2698789
> 2019 223.8440115 219.3309631 221.5382052 221.5720276 222.0963057
> 223.8392450 224.0982199
>
> But I would like to have the results in tabular form, where the first
> column is the date with format mmm-yyyy (for example jan-2019) and the
> second row are the actual forecasts.
>
> Like this
> Date TransitForecast
> Jan-2019 230
> Feb-2019 217
> etc.
>
> Any guidance will be greatly appreciated,
>
> Best regards,
>
> Paul
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
[[alternative HTML version deleted]]
More information about the R-help
mailing list