[R] Help understanding why glm and lrm.fit runs with my data, but lrm does not
Frank Harrell
f.harrell at vanderbilt.edu
Thu Sep 14 18:21:52 CEST 2017
Fixed 'maxiter' in the help file. Thanks.
Please give the original source of that dataset.
That dataset is a tiny sample of GUSTO-I and not large enough to fit this
model very reliably.
A nomogram using the full dataset (not publicly available to my knowledge)
is already available in http://biostat.mc.vanderbilt.edu/tmp/bbr.pdf
Use lrm, not lrm.fit for this. Adding maxit=20 will probably make it work
on the small dataset but still not clear on why you are using this dataset.
Frank
------------------------------
Frank E Harrell Jr Professor School of Medicine
Department of *Biostatistics* *Vanderbilt University*
On Thu, Sep 14, 2017 at 10:48 AM, David Winsemius <dwinsemius at comcast.net>
wrote:
>
> > On Sep 14, 2017, at 12:30 AM, Bonnett, Laura <
> L.J.Bonnett at liverpool.ac.uk> wrote:
> >
> > Dear all,
> >
> > I am using the publically available GustoW dataset. The exact version I
> am using is available here: https://na01.safelinks.
> protection.outlook.com/?url=https%3A%2F%2Fdrive.google.com%2Fopen%3Fid%
> 3D0B4oZ2TQA0PAoUm85UzBFNjZ0Ulk&data=02%7C01%7Cf.harrell%40vanderbilt.edu%
> 7Cadb58b13c3994f89209708d4fb8807f0%7Cba5a7f39e3be4ab3b45067fa80fa
> ecad%7C0%7C0%7C636410009046132507&sdata=UZgX3%2Ba%
> 2FU2Eeh8ybHMI6JnF0Npd2XJPXAzlmtEhDgOY%3D&reserved=0
> >
> > I would like to produce a nomogram for 5 covariates - AGE, HYP, KILLIP,
> HRT and ANT. I have successfully fitted a logistic regression model using
> the "glm" function as shown below.
> >
> > library(rms)
> > gusto <- spss.get("GustoW.sav")
> > fit <- glm(DAY30~AGE+HYP+factor(KILLIP)+HRT+ANT,family=
> binomial(link="logit"),data=gusto,x=TRUE,y=TRUE)
> >
> > However, my review of the literature and other websites suggest I need
> to use "lrm" for the purposes of producing a nomogram. When I run the
> command using "lrm" (see below) I get an error message saying:
> > Error in lrm(DAY30 ~ AGE + HYP + KILLIP + HRT + ANT, gusto2) :
> > Unable to fit model using "lrm.fit"
> >
> > My code is as follows:
> > gusto2 <- gusto[,c(1,3,5,8,9,10)]
> > gusto2$HYP <- factor(gusto2$HYP, labels=c("No","Yes"))
> > gusto2$KILLIP <- factor(gusto2$KILLIP, labels=c("1","2","3","4"))
> > gusto2$HRT <- factor(gusto2$HRT, labels=c("No","Yes"))
> > gusto2$ANT <- factor(gusto2$ANT, labels=c("No","Yes"))
> > var.labels=c(DAY30="30-day Mortality", AGE="Age in Years",
> KILLIP="Killip Class", HYP="Hypertension", HRT="Tachycardia", ANT="Anterior
> Infarct Location")
> > label(gusto2)=lapply(names(var.labels),function(x)
> label(gusto2[,x])=var.labels[x])
> >
> > ddist = datadist(gusto2)
> > options(datadist='ddist')
> >
> > fit1 <- lrm(DAY30~AGE+HYP+KILLIP+HRT+ANT,gusto2)
> >
> > Error in lrm(DAY30 ~ AGE + HYP + KILLIP + HRT + ANT, gusto2) :
> > Unable to fit model using "lrm.fit"
> >
> > Online solutions to this problem involve checking whether any variables
> are redundant. However, the results for my data suggest that none are.
> > redun(~AGE+HYP+KILLIP+HRT+ANT,gusto2)
> >
> > Redundancy Analysis
> >
> > redun(formula = ~AGE + HYP + KILLIP + HRT + ANT, data = gusto2)
> >
> > n: 2188 p: 5 nk: 3
> >
> > Number of NAs: 0
> >
> > Transformation of target variables forced to be linear
> >
> > R-squared cutoff: 0.9 Type: ordinary
> >
> > R^2 with which each variable can be predicted from all other variables:
> >
> > AGE HYP KILLIP HRT ANT
> > 0.028 0.032 0.053 0.046 0.040
> >
> > No redundant variables
> >
> > I've also tried just considering "lrm.fit" and that code seems to run
> without error too:
> > lrm.fit(cbind(gusto2$AGE,gusto2$KILLIP,gusto2$HYP,
> gusto2$HRT,gusto2$ANT),gusto2$DAY30)
> >
> > Logistic Regression Model
> >
> > lrm.fit(x = cbind(gusto2$AGE, gusto2$KILLIP, gusto2$HYP, gusto2$HRT,
> > gusto2$ANT), y = gusto2$DAY30)
> >
> > Model Likelihood Discrimination Rank
> Discrim.
> > Ratio Test Indexes Indexes
> > Obs 2188 LR chi2 233.59 R2 0.273 C
> 0.846
> > 0 2053 d.f. 5 g 1.642 Dxy
> 0.691
> > 1 135 Pr(> chi2) <0.0001 gr 5.165 gamma
> 0.696
> > max |deriv| 4e-09 gp 0.079 tau-a
> 0.080
> > Brier 0.048
> >
> > Coef S.E. Wald Z Pr(>|Z|)
> > Intercept -13.8515 0.9694 -14.29 <0.0001
> > x[1] 0.0989 0.0103 9.58 <0.0001
> > x[2] 0.9030 0.1510 5.98 <0.0001
> > x[3] 1.3576 0.2570 5.28 <0.0001
> > x[4] 0.6884 0.2034 3.38 0.0007
> > x[5] 0.6327 0.2003 3.16 0.0016
> >
> > I was therefore hoping someone would explain why the "lrm" code is
> producing an error message, while "lrm.fit" and "glm" do not. In
> particular I would welcome a solution to ensure I can produce a nomogram.
>
> Try this:
>
> lrm # look at code, do a search on "fail"
> ?lrm.fit # read the structure of the returned value of lrm.fit
>
> my.fit <- lrm.fit(x = cbind(gusto2$AGE, gusto2$KILLIP, gusto2$HYP,
> gusto2$HRT,
> gusto2$ANT), y = gusto2$DAY30)
>
> print(my.fit$fail) # the error message you got from the lrm call means
> convergence failed
>
> Documentation bug: The documentation of the cause of the 'fail'- value
> incorrectly gives the name of this parameter as 'maxiter' in the Value
> section.
>
> --
> David.
>
>
>
> >
> > Kind regards,
> > Laura
> >
> > Dr Laura Bonnett
> > NIHR Post-Doctoral Fellow
> >
> > Department of Biostatistics,
> > Waterhouse Building, Block F,
> > 1-5 Brownlow Street,
> > University of Liverpool,
> > Liverpool,
> > L69 3GL
> >
> > 0151 795 9686
> > L.J.Bonnett at liverpool.ac.uk
> >
> >
> >
> > [[alternative HTML version deleted]]
> >
> > ______________________________________________
> > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> > https://na01.safelinks.protection.outlook.com/?url=
> https%3A%2F%2Fstat.ethz.ch%2Fmailman%2Flistinfo%2Fr-help&
> data=02%7C01%7Cf.harrell%40vanderbilt.edu%7Cadb58b13c3994f89209708d4fb88
> 07f0%7Cba5a7f39e3be4ab3b45067fa80faecad%7C0%7C0%
> 7C636410009046132507&sdata=GAPis8GXCfundLz48dX66AZfVTzxs%
> 2BNBUmG1kgpx2Ro%3D&reserved=0
> > PLEASE do read the posting guide https://na01.safelinks.
> protection.outlook.com/?url=http%3A%2F%2Fwww.R-project.
> org%2Fposting-guide.html&data=02%7C01%7Cf.harrell%40vanderbilt.edu%
> 7Cadb58b13c3994f89209708d4fb8807f0%7Cba5a7f39e3be4ab3b45067fa80fa
> ecad%7C0%7C0%7C636410009046132507&sdata=C8xd7UizYeLM6bylOyad8bumQTsYOz
> FYZu2IcMo%2BUII%3D&reserved=0
> > and provide commented, minimal, self-contained, reproducible code.
>
> David Winsemius
> Alameda, CA, USA
>
> 'Any technology distinguishable from magic is insufficiently advanced.'
> -Gehm's Corollary to Clarke's Third Law
>
>
>
>
>
>
[[alternative HTML version deleted]]
More information about the R-help
mailing list