[R] remove
Val
valkremk at gmail.com
Sun Feb 12 16:12:47 CET 2017
Jeff, Rolf and Philip.
Thank you very much for your suggestion.
Jeff, you suggested if your data is big then consider data.table ....
My data is "big" it is more than 200M records and I will see if this
function works.
Thank you again.
On Sun, Feb 12, 2017 at 12:42 AM, Jeff Newmiller
<jdnewmil at dcn.davis.ca.us> wrote:
> The "by" function aggregates and returns a result with generally fewer rows
> than the original data. Since you are looking to index the rows in the
> original data set, the "ave" function is better suited because it always
> returns a vector that is just as long as the input vector:
>
> # I usually work with character data rather than factors if I plan
> # to modify the data (e.g. removing rows)
> DF <- read.table( text=
> 'first week last
> Alex 1 West
> Bob 1 John
> Cory 1 Jack
> Cory 2 Jack
> Bob 2 John
> Bob 3 John
> Alex 2 Joseph
> Alex 3 West
> Alex 4 West
> ', header = TRUE, as.is = TRUE )
>
> err <- ave( DF$last
> , DF[ , "first", drop = FALSE]
> , FUN = function( lst ) {
> length( unique( lst ) )
> }
> )
> result <- DF[ "1" == err, ]
> result
>
> Notice that the ave function returns a vector of the same type as was given
> to it, so even though the function returns a numeric the err
> vector is character.
>
> If you wanted to be able to examine more than one other column in
> determining the keep/reject decision, you could do:
>
> err2 <- ave( seq_along( DF$first )
> , DF[ , "first", drop = FALSE]
> , FUN = function( n ) {
> length( unique( DF[ n, "last" ] ) )
> }
> )
> result2 <- DF[ 1 == err2, ]
> result2
>
> and then you would have the option to re-use the "n" index to look at other
> columns as well.
>
> Finally, here is a dplyr solution:
>
> library(dplyr)
> result3 <- ( DF
> %>% group_by( first ) # like a prep for ave or by
> %>% mutate( err = length( unique( last ) ) ) # similar to ave
> %>% filter( 1 == err ) # drop the rows with too many last names
> %>% select( -err ) # drop the temporary column
> %>% as.data.frame # convert back to a plain-jane data frame
> )
> result3
>
> which uses a small set of verbs in a pipeline of functions to go from input
> to result in one pass.
>
> If your data set is really big (running out of memory big) then you might
> want to investigate the data.table or sqlite packages, either of which can
> be combined with dplyr to get a standardized syntax for managing larger
> amounts of data. However, most people actually aren't running out of memory
> so in most cases the extra horsepower isn't actually needed.
>
>
> On Sun, 12 Feb 2017, P Tennant wrote:
>
>> Hi Val,
>>
>> The by() function could be used here. With the dataframe dfr:
>>
>> # split the data by first name and check for more than one last name for
>> each first name
>> res <- by(dfr, dfr['first'], function(x) length(unique(x$last)) > 1)
>> # make the result more easily manipulated
>> res <- as.table(res)
>> res
>> # first
>> # Alex Bob Cory
>> # TRUE FALSE FALSE
>>
>> # then use this result to subset the data
>> nw.dfr <- dfr[!dfr$first %in% names(res[res]) , ]
>> # sort if needed
>> nw.dfr[order(nw.dfr$first) , ]
>>
>> first week last
>> 2 Bob 1 John
>> 5 Bob 2 John
>> 6 Bob 3 John
>> 3 Cory 1 Jack
>> 4 Cory 2 Jack
>>
>>
>> Philip
>>
>> On 12/02/2017 4:02 PM, Val wrote:
>>>
>>> Hi all,
>>> I have a big data set and want to remove rows conditionally.
>>> In my data file each person were recorded for several weeks. Somehow
>>> during the recording periods, their last name was misreported. For
>>> each person, the last name should be the same. Otherwise remove from
>>> the data. Example, in the following data set, Alex was found to have
>>> two last names .
>>>
>>> Alex West
>>> Alex Joseph
>>>
>>> Alex should be removed from the data. if this happens then I want
>>> remove all rows with Alex. Here is my data set
>>>
>>> df<- read.table(header=TRUE, text='first week last
>>> Alex 1 West
>>> Bob 1 John
>>> Cory 1 Jack
>>> Cory 2 Jack
>>> Bob 2 John
>>> Bob 3 John
>>> Alex 2 Joseph
>>> Alex 3 West
>>> Alex 4 West ')
>>>
>>> Desired output
>>>
>>> first week last
>>> 1 Bob 1 John
>>> 2 Bob 2 John
>>> 3 Bob 3 John
>>> 4 Cory 1 Jack
>>> 5 Cory 2 Jack
>>>
>>> Thank you in advance
>>>
>>> ______________________________________________
>>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>> PLEASE do read the posting guide
>>> http://www.R-project.org/posting-guide.html
>>> and provide commented, minimal, self-contained, reproducible code.
>>
>>
>> ______________________________________________
>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
> ---------------------------------------------------------------------------
> Jeff Newmiller The ..... ..... Go Live...
> DCN:<jdnewmil at dcn.davis.ca.us> Basics: ##.#. ##.#. Live Go...
> Live: OO#.. Dead: OO#.. Playing
> Research Engineer (Solar/Batteries O.O#. #.O#. with
> /Software/Embedded Controllers) .OO#. .OO#. rocks...1k
> ---------------------------------------------------------------------------
More information about the R-help
mailing list