[R] help with recursive function

DIGHE, NILESH [AG/2362] nilesh.dighe at monsanto.com
Thu Dec 14 18:11:20 CET 2017


Eric:  I will try and see if I can figure out the issue by debugging as you suggested. I don’t know why my code after stopifnot is not getting executed where I like the code to run the funlp2 function when the if statement is TRUE but when it is false, I like it to keep running until the stopifnot condition is met.

When the stopifnot condition is met, I like to get the output from if statement saved.
Anyway,  I will keep trying.
Again, Thanks for your help!
Nilesh

From: Eric Berger [mailto:ericjberger at gmail.com]
Sent: Thursday, December 14, 2017 10:29 AM
To: DIGHE, NILESH [AG/2362] <nilesh.dighe at monsanto.com>
Cc: r-help <r-help at r-project.org>
Subject: Re: [R] help with recursive function

If you are trying to understand why the "stopifnot" condition is met you can replace it by something like:

if ( any(dat2$norm_sd >= 1) )
   browser()

This will put you in a debugging session where you can examine your variables, e.g.

> dat$norm_sd

HTH,
Eric



On Thu, Dec 14, 2017 at 5:33 PM, Eric Berger <ericjberger at gmail.com<mailto:ericjberger at gmail.com>> wrote:
The message is coming from your stopifnot() condition being met.


On Thu, Dec 14, 2017 at 5:31 PM, DIGHE, NILESH [AG/2362] <nilesh.dighe at monsanto.com<mailto:nilesh.dighe at monsanto.com>> wrote:
Hi, I accidently left out few lines of code from the calclp function.  Updated function is pasted below.
I am still getting the same error “Error: !(any(data1$norm_sd >= 1)) is not TRUE“

I would appreciate any help.
Nilesh
dput(calclp)
function (dataset)
{
    dat1 <- funlp1(dataset)
    recursive_funlp <- function(dataset = dat1, func = funlp2) {
        dat2 <- dataset %>% select(uniqueid, field_rep, lp) %>%
            mutate(field_rep = paste(field_rep, "lp", sep = ".")) %>%
            spread(key = field_rep, value = lp) %>% mutate_at(.vars = grep("_",
            names(.)), funs(norm = round(scale(.), 3)))
        dat2$norm_sd <- round(apply(dat2[, grep("lp_norm", names(dat2))],
            1, sd, na.rm = TRUE), 3)
        dat2$norm_max <- round(apply(dat2[, grep("lp_norm", names(dat2))],
            1, function(x) {
                max(abs(x), na.rm = TRUE)
            }), 3)
        data1 <- dat2 %>% gather(key, value, -uniqueid, -norm_max,
            -norm_sd) %>% separate(key, c("field_rep", "treatment"),
            "\\.<file://.>") %>% spread(treatment, value) %>% mutate(outlier = NA)
        stopifnot(!(any(data1$norm_sd >= 1)))
        if (!(any(data1$norm_sd >= 1))) {
            df1 <- dat1
            return(df1)
        }
       else {
            df2 <- recursive_funlp()
            return(df2)
        }
    }
    df3 <- recursive_funlp(dataset = dat1, func = funlp2)
    df3
}


From: DIGHE, NILESH [AG/2362]
Sent: Thursday, December 14, 2017 9:01 AM
To: 'Eric Berger' <ericjberger at gmail.com<mailto:ericjberger at gmail.com>>
Cc: r-help <r-help at r-project.org<mailto:r-help at r-project.org>>
Subject: RE: [R] help with recursive function

Eric:  Thanks for taking time to look into my problem.  Despite of making the change you suggested, I am still getting the same error.  I am wondering if the logic I am using in the stopifnot and if functions is a problem.
I like the recursive function to stop whenever the norm_sd column has zero values that are above or equal to 1. Below is the calclp function after the changes you suggested.
Thanks. Nilesh

dput(calclp)
function (dataset)
{
    dat1 <- funlp1(dataset)
    recursive_funlp <- function(dataset = dat1, func = funlp2) {
        dat2 <- dataset %>% select(uniqueid, field_rep, lp) %>%
            mutate(field_rep = paste(field_rep, "lp", sep = ".")) %>%
            spread(key = field_rep, value = lp) %>% mutate_at(.vars = grep("_",
            names(.)), funs(norm = round(scale(.), 3)))
        dat2$norm_sd <- round(apply(dat2[, grep("lp_norm", names(dat2))],
            1, sd, na.rm = TRUE), 3)
        dat2$norm_max <- round(apply(dat2[, grep("lp_norm", names(dat2))],
            1, function(x) {
                max(abs(x), na.rm = TRUE)
            }), 3)
        stopifnot(!(any(dat2$norm_sd >= 1)))
        if (!(any(dat2$norm_sd >= 1))) {
            df1 <- dat1
            return(df1)
        }
        else {
            df2 <- recursive_funlp()
            return(df2)
        }
    }
    df3 <- recursive_funlp(dataset = dat1, func = funlp2)
    df3
}


From: Eric Berger [mailto:ericjberger at gmail.com]
Sent: Thursday, December 14, 2017 8:17 AM
To: DIGHE, NILESH [AG/2362] <nilesh.dighe at monsanto.com<mailto:nilesh.dighe at monsanto.com>>
Cc: r-help <r-help at r-project.org<mailto:r-help at r-project.org>>
Subject: Re: [R] help with recursive function

My own typo ... whoops ...

!( any(dat2$norm_sd >= 1 ))



On Thu, Dec 14, 2017 at 3:43 PM, Eric Berger <ericjberger at gmail.com<mailto:ericjberger at gmail.com>> wrote:
You seem to have a typo at this expression (and some others like it)

Namely, you write

any(!dat2$norm_sd) >= 1

when you possibly meant to write

!( any(dat2$norm_sd) >= 1 )

i.e. I think your ! seems to be in the wrong place.

HTH,
Eric


On Thu, Dec 14, 2017 at 3:26 PM, DIGHE, NILESH [AG/2362] <nilesh.dighe at monsanto.com<mailto:nilesh.dighe at monsanto.com>> wrote:
Hi, I need some help with running a recursive function. I like to run funlp2 recursively.
When I try to run recursive function in another function named "calclp" I get this "Error: any(!dat2$norm_sd) >= 1 is not TRUE".

I have never built a recursive function before so having trouble executing it in this case.  I would appreciate any help or guidance to resolve this issue. Please see my data and the three functions that I am using below.
Please note that calclp is the function I am running and the other two functions are within this calclp function.

# code:
Test<- calclp(dataset = dat)

# calclp function

calclp<- function (dataset)

{

    dat1 <- funlp1(dataset)

    recursive_funlp <- function(dataset = dat1, func = funlp2) {

        dat2 <- dataset %>% select(uniqueid, field_rep, lp) %>%

            mutate(field_rep = paste(field_rep, "lp", sep = ".")) %>%

            spread(key = field_rep, value = lp) %>% mutate_at(.vars = grep("_",

            names(.)), funs(norm = round(scale(.), 3)))

        dat2$norm_sd <- round(apply(dat2[, grep("lp_norm", names(dat2))],

            1, sd, na.rm = TRUE), 3)

        dat2$norm_max <- round(apply(dat2[, grep("lp_norm", names(dat2))],

            1, function(x) {

                max(abs(x), na.rm = TRUE)

            }), 3)

        stopifnot(any(!dat2$norm_sd) >= 1)

        if (any(!dat2$norm_sd) >= 1) {

            df1 <- dat1

            return(df1)

        }

        else {

            df2 <- recursive_funlp()

            return(df2)

        }

    }

    df3 <- recursive_funlp(dataset = dat1, func = funlp2)

    df3

}


# funlp1 function

funlp1<- function (dataset)

{

    dat2 <- dataset %>% select(field, set, ent_num, rep_num,

        lp) %>% unite(uniqueid, set, ent_num, sep = ".") %>%

        unite(field_rep, field, rep_num) %>% mutate(field_rep = paste(field_rep,

        "lp", sep = ".")) %>% spread(key = field_rep, value = lp) %>%

        mutate_at(.vars = grep("_", names(.)), funs(norm = round(scale(.),

            3)))

    dat2$norm_sd <- round(apply(dat2[, grep("lp_norm", names(dat2))],

        1, sd, na.rm = TRUE), 3)

    dat2$norm_max <- round(apply(dat2[, grep("lp_norm", names(dat2))],

        1, function(x) {

            max(abs(x), na.rm = TRUE)

        }), 3)

    data1 <- dat2 %>% gather(key, value, -uniqueid, -norm_max,

        -norm_sd) %>% separate(key, c("field_rep", "treatment"),

        "\\.<file://.>") %>% spread(treatment, value) %>% mutate(outlier = NA)

    df_clean <- with(data1, data1[norm_sd < 1, ])

    datD <- with(data1, data1[norm_sd >= 1, ])

    s <- split(datD, datD$uniqueid)

    sdf <- lapply(s, function(x) {

        data.frame(x, x$outlier <- ifelse(is.na<http://is.na>(x$lp_norm), NA,

            ifelse(abs(x$lp_norm) == x$norm_max, "yes", "no")),

            x$lp <- with(x, ifelse(outlier == "yes", NA, lp)))

        x

    })

    sdf2 <- bind_rows(sdf)

    all_dat <- bind_rows(df_clean, sdf2)

    all_dat

}


# funlp2 function

funlp2<-function (dataset)

{

    data1 <- dataset

    df_clean <- with(data1, data1[norm_sd < 1, ])

    datD <- with(data1, data1[norm_sd >= 1, ])

    s <- split(datD, datD$uniqueid)

    sdf <- lapply(s, function(x) {

        data.frame(x, x$outlier <- ifelse(is.na<http://is.na>(x$lp_norm), NA,

            ifelse(abs(x$lp_norm) == x$norm_max, "yes", "no")),

            x$lp <- with(x, ifelse(outlier == "yes", NA, lp)))

        x

    })

    sdf2 <- bind_rows(sdf)

    all_dat <- bind_rows(df_clean, sdf2)

    all_dat

}


# dataset
dput(dat)
structure(list(field = c("LM01", "LM01", "LM01", "LM01", "LM01",
"LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01",
"LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01",
"LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01",
"LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01",
"LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01",
"LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01",
"LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01",
"LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "LM01", "OL01",
"OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01",
"OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01",
"OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01",
"OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01",
"OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01",
"OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01",
"OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01",
"OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01",
"OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "OL01", "SGI1",
"SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1",
"SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1",
"SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1",
"SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1",
"SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1",
"SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1",
"SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1",
"SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1",
"SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "SGI1", "B2NW",
"B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW",
"B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW",
"B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW",
"B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW",
"B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW",
"B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW",
"B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW",
"B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "O2LS", "O2LS",
"O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS",
"O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS",
"O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS",
"O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS",
"O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS",
"O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS",
"O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS",
"O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS",
"O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "O2LS", "B2NW", "B2NW",
"B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "B2NW", "17C3",
"17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3",
"17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3",
"17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3",
"17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3",
"17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3",
"17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3",
"17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3",
"17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3",
"17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "17C3", "WCI1",
"WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1",
"WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1",
"WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1",
"WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1",
"WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1",
"WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1",
"WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1",
"WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1",
"WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "WCI1", "NY01",
"NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01",
"NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01",
"NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01",
"NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01",
"NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01",
"NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01",
"NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01",
"NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "NY01",
"NY01", "NY01", "NY01", "NY01", "NY01", "NY01", "EX01", "EX01",
"EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01",
"EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01",
"EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01",
"EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01",
"EX01", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND",
"MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND",
"MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND",
"MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND",
"MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND",
"MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND",
"MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND",
"MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND",
"MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND", "MAND",
"MAND", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP",
"28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP",
"28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP",
"28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP",
"28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP",
"28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP",
"28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP",
"28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP",
"28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP", "28EP",
"28EP", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01",
"EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01",
"EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01",
"EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01", "EX01",
"EX01", "EX01", "EX01", "EX01", "EX01", "EX01"), set = c("seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta", "seta", "seta", "seta", "seta", "seta", "seta",
"seta", "seta"), ent_num = c(23L, 14L, 43L, 30L, 44L, 60L, 17L,
34L, 41L, 40L, 9L, 36L, 38L, 19L, 61L, 51L, 45L, 42L, 3L, 39L,
21L, 11L, 12L, 7L, 35L, 5L, 70L, 47L, 28L, 16L, 72L, 13L, 49L,
67L, 56L, 32L, 27L, 46L, 24L, 63L, 15L, 66L, 26L, 29L, 48L, 1L,
54L, 37L, 2L, 50L, 52L, 31L, 33L, 25L, 6L, 69L, 53L, 10L, 18L,
55L, 59L, 4L, 58L, 22L, 20L, 64L, 71L, 57L, 11L, 17L, 43L, 13L,
1L, 16L, 34L, 47L, 52L, 72L, 59L, 22L, 54L, 18L, 25L, 61L, 56L,
41L, 27L, 14L, 49L, 19L, 29L, 31L, 64L, 6L, 53L, 35L, 37L, 67L,
39L, 51L, 40L, 15L, 69L, 60L, 38L, 4L, 23L, 3L, 48L, 32L, 42L,
24L, 28L, 33L, 57L, 8L, 21L, 46L, 7L, 30L, 45L, 2L, 63L, 36L,
68L, 20L, 66L, 70L, 58L, 5L, 10L, 12L, 62L, 50L, 71L, 9L, 55L,
26L, 44L, 65L, 14L, 63L, 46L, 58L, 62L, 19L, 59L, 2L, 5L, 6L,
40L, 21L, 44L, 37L, 55L, 35L, 71L, 56L, 10L, 36L, 53L, 25L, 61L,
12L, 26L, 23L, 4L, 13L, 28L, 38L, 57L, 54L, 72L, 48L, 66L, 9L,
70L, 15L, 39L, 60L, 17L, 34L, 51L, 67L, 42L, 49L, 31L, 30L, 3L,
18L, 65L, 32L, 27L, 52L, 22L, 11L, 47L, 64L, 8L, 43L, 41L, 16L,
20L, 33L, 7L, 50L, 68L, 24L, 1L, 69L, 45L, 29L, 37L, 30L, 55L,
54L, 43L, 32L, 21L, 27L, 33L, 40L, 67L, 57L, 68L, 31L, 17L, 13L,
6L, 62L, 19L, 22L, 3L, 10L, 44L, 34L, 69L, 70L, 4L, 1L, 25L,
11L, 51L, 5L, 63L, 71L, 12L, 38L, 58L, 39L, 49L, 59L, 56L, 65L,
2L, 64L, 8L, 35L, 46L, 45L, 29L, 53L, 36L, 42L, 23L, 18L, 50L,
26L, 14L, 48L, 66L, 20L, 24L, 7L, 15L, 53L, 22L, 39L, 20L, 60L,
59L, 43L, 19L, 41L, 6L, 62L, 1L, 55L, 34L, 50L, 38L, 40L, 44L,
4L, 46L, 29L, 65L, 57L, 48L, 33L, 69L, 14L, 35L, 67L, 72L, 54L,
3L, 49L, 2L, 12L, 18L, 30L, 10L, 70L, 31L, 15L, 63L, 71L, 21L,
45L, 28L, 56L, 27L, 64L, 61L, 51L, 5L, 24L, 68L, 25L, 66L, 16L,
36L, 58L, 37L, 52L, 26L, 9L, 42L, 7L, 11L, 8L, 32L, 23L, 13L,
47L, 17L, 61L, 72L, 47L, 60L, 16L, 9L, 28L, 52L, 41L, 1L, 61L,
6L, 23L, 58L, 63L, 25L, 28L, 30L, 36L, 62L, 9L, 32L, 19L, 31L,
56L, 45L, 2L, 22L, 27L, 40L, 14L, 11L, 50L, 13L, 70L, 20L, 64L,
39L, 26L, 21L, 43L, 29L, 35L, 54L, 52L, 37L, 17L, 16L, 72L, 48L,
12L, 18L, 44L, 42L, 49L, 68L, 5L, 55L, 69L, 51L, 66L, 59L, 53L,
15L, 71L, 41L, 57L, 4L, 60L, 8L, 7L, 33L, 34L, 24L, 10L, 67L,
47L, 38L, 3L, 65L, 46L, 20L, 34L, 71L, 1L, 33L, 57L, 13L, 21L,
66L, 29L, 3L, 61L, 69L, 24L, 62L, 39L, 49L, 47L, 31L, 53L, 52L,
43L, 17L, 7L, 8L, 12L, 60L, 63L, 50L, 2L, 51L, 46L, 10L, 23L,
48L, 11L, 26L, 40L, 70L, 42L, 59L, 15L, 56L, 58L, 27L, 6L, 35L,
4L, 37L, 5L, 65L, 44L, 28L, 14L, 32L, 36L, 45L, 9L, 18L, 55L,
68L, 30L, 54L, 41L, 25L, 22L, 38L, 16L, 67L, 64L, 19L, 72L, 68L,
28L, 33L, 15L, 51L, 4L, 47L, 36L, 8L, 57L, 48L, 1L, 52L, 39L,
32L, 50L, 13L, 30L, 63L, 2L, 9L, 62L, 22L, 6L, 61L, 16L, 53L,
38L, 37L, 20L, 69L, 44L, 56L, 29L, 26L, 14L, 17L, 46L, 66L, 58L,
42L, 60L, 19L, 45L, 3L, 59L, 70L, 31L, 24L, 55L, 40L, 43L, 25L,
65L, 12L, 67L, 21L, 7L, 27L, 49L, 72L, 54L, 41L, 23L, 34L, 5L,
64L, 35L, 18L, 71L, 11L, 24L, 19L, 38L, 14L, 4L, 56L, 5L, 54L,
34L, 64L, 55L, 33L, 69L, 71L, 52L, 61L, 48L, 23L, 43L, 41L, 20L,
39L, 11L, 63L, 36L, 22L, 9L, 25L, 27L, 51L, 53L, 37L, 57L, 13L,
18L, 64L, 22L, 53L, 16L, 5L, 28L, 60L, 31L, 11L, 29L, 45L, 59L,
72L, 49L, 67L, 13L, 20L, 3L, 42L, 44L, 69L, 33L, 38L, 15L, 70L,
35L, 48L, 26L, 56L, 19L, 39L, 43L, 40L, 14L, 2L, 68L, 51L, 12L,
47L, 10L, 55L, 23L, 4L, 71L, 41L, 50L, 7L, 24L, 61L, 27L, 54L,
46L, 58L, 37L, 66L, 57L, 1L, 36L, 32L, 18L, 62L, 9L, 30L, 21L,
6L, 52L, 8L, 65L, 17L, 25L, 63L, 34L, 65L, 22L, 56L, 9L, 7L,
11L, 31L, 4L, 63L, 29L, 61L, 54L, 12L, 62L, 59L, 5L, 23L, 53L,
36L, 24L, 35L, 66L, 49L, 72L, 18L, 70L, 32L, 43L, 20L, 45L, 34L,
46L, 28L, 6L, 44L, 71L, 39L, 13L, 27L, 1L, 58L, 30L, 68L, 17L,
33L, 26L, 57L, 15L, 21L, 52L, 48L, 42L, 16L, 40L, 38L, 8L, 69L,
2L, 51L, 67L, 55L, 64L, 47L, 60L, 19L, 41L, 50L, 3L, 14L, 25L,
10L, 37L, 6L, 15L, 45L, 49L, 8L, 17L, 50L, 16L, 58L, 72L, 26L,
60L, 7L, 32L, 1L, 46L, 66L, 68L, 62L, 47L, 35L, 70L, 10L, 31L,
65L, 2L, 3L, 21L, 12L, 30L, 40L, 28L, 59L, 42L, 67L, 44L, 29L
), rep_num = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), lp = c(NA, 41.64, 38.8, 44.45, 40.54,
38.54, 41.94, 39.6, 37.39, 40.95, 38.45, 43.47, 41.66, 40.91,
42.68, 43.12, 38.22, 40.95, 46.24, 42.95, 38.95, 39.88, 40.57,
40.13, 38.57, 45.45, 40.78, 43.52, 39.75, 39.93, 40.35, 37.6,
37.7, 43.05, 43.32, 41.31, 39.03, 42.5, 43.18, 41.32, 39.58,
40.62, 39.64, 39.85, 38.75, 40.18, 41.44, 40.5, 40.87, 40.75,
38.37, 40.26, 35.11, 40.89, 41.67, 38.87, 37.32, 35.85, 38.25,
42.21, 43.15, 38.69, 38.8, 38.77, 37.98, 39.8, 33.37, 40.09,
42.87, 44.07, 43.78, 42.47, 42.8, 41.1, 41.17, 44.07, 44.24,
43.16, 46.12, 42.64, 43.92, 42.16, 43.69, 42.89, 42.63, 43.58,
44.4, 43.17, 43.3, 42.5, 42.6, 44.05, 44.63, 43.09, 45.17, 45.17,
42.78, 42.38, 45.76, 42.16, 44.22, 43.67, 40.45, 41.95, 42.49,
41.98, 45.15, 46.01, 38.51, 43.08, 45.19, 44.53, 43.14, 39.93,
46.84, 43.59, 41.68, 43.7, 44.63, 44.02, 42.07, 43.88, 43.2,
46.2, 40.84, 39.14, 43.89, 42.58, 41.53, 45.32, 39.56, 43.77,
45.45, 45.16, 43.4, 40.08, 42.27, 43.74, 43.77, 41.31, 41.38,
45.01, 45.76, 40.4, 48.39, 46.27, 15.44, 44.76, 47.45, 44.87,
46.8, 41.83, 43.03, 43.96, 42.51, 45.06, 45.55, 44.9, 42.47,
44.9, 45, 44.77, 43.79, 44.26, 44.57, 44.4, 43.42, 42.31, 47.18,
43.83, 45.72, 44.83, 44.96, 40.28, 42.85, 41.23, 45.23, 47.09,
43.61, 42.69, 46.27, 45.16, 44.14, 43.34, 45.97, 43.81, 43.01,
39.82, 45.91, 45.97, 43.61, 45.12, 46.37, 42.67, 42.47, 45.86,
44.19, 44.46, 42.64, 43.95, 44.93, 40.33, 42.75, 39.92, 44.17,
44.49, 41.51, 42.43, 44.14, 40.5, 41.29, 44.89, 37.98, 39.02,
39.62, 42.13, 39.03, 44.16, 39.15, 41.49, 42.63, 40.11, 39.97,
42.85, 35.98, 39.45, 40.99, 42.44, 42.11, 37.36, 40.63, 40.69,
43.57, 39.04, 39.3, 42.19, 36.88, 40.39, 37.78, 38.6, 40.2, 40.98,
36.58, 43.59, 42.49, 39.96, 39.84, 40.43, 38.94, 42.72, 39.43,
42.13, 40.36, 40.58, 40.01, 42.17, 42.17, 41.35, 43.27, 40.15,
39.76, 40.94, 40.87, 42.32, 41.81, 41.97, 43.72, 41.32, 40.83,
37.64, 41.03, 38.98, 40.61, 41.17, 41.96, 40.07, 38.48, 42.85,
38.68, 39.09, 42.16, 38.14, 37.99, 41.06, 37.4, 41.88, 39.35,
39.73, 38.38, 41.34, 40.67, 40.89, 39.28, 37.59, 39.3, 39.72,
40.79, 39.42, 34.5, 37.61, 37.76, 40.24, 41.17, 41.24, 42.14,
42.53, 39.71, 39.44, 40.19, 42.51, 40.15, 36.26, 37.48, 40.43,
37.5, 42.11, 41.44, 40.29, 39.75, 37.58, 41.25, 40.39, 41.63,
42.18, 43.71, 38.69, 43.47, 41.98, 35.51, 42.22, 38.51, 40.17,
39.4, 39.54, 41.7, 40.93, 40.01, 35.97, 41.44, 41.89, 40.9, 39.95,
40.69, 43.18, 37.03, 39.91, 36.75, 42.75, 41.61, 42.6, 38.55,
42.84, 38.41, 42.55, 41.44, 41.03, 40, 41.35, 42.18, 42.66, 40.06,
42.48, 41.33, 41.92, 40.88, 40.99, 42.78, 38.26, 40.81, 39.95,
37.89, 40.81, 38.33, 39.33, 39.67, 40.12, 41.75, 39.81, 41.92,
44.59, 37.8, 40.54, 40.49, 41.82, 42.13, 39.93, 39.94, 42.54,
41.74, 43.06, 41.72, 41.27, 39.42, 42.07, 40.06, 42.1, 38.91,
39.28, 42.94, 39.94, 41.86, 38.56, 38.15, 41.47, 42.34, 38.14,
40.19, 40.2, 43.01, 42.35, 40.89, 41.44, 42.89, 44.49, 39.1,
38.42, 37.44, 43.28, 37.96, 40.56, 41.53, 41.59, 41.45, 42.55,
40.6, 44.04, 39.31, 41.08, 37.14, 40.03, 41.49, 40.82, 38.47,
43.43, 38.82, 40.4, 41.09, 42.26, 41.85, 41.13, 37.27, 41.97,
45.24, 43.35, 40.53, 43.14, 39.71, 42.77, 42.2, 42.13, 41.91,
42.59, 41.99, 42.11, 40.43, 40.02, 43.53, 43.01, 39.55, 43.2,
39.95, 42.51, 42, 42.26, 42.39, 42.64, 39.9, 41.89, 43.05, 41.02,
41.95, 39.92, 43.42, 44.01, 42.6, 40.84, 42.86, 44.31, 42.24,
41.25, 42.38, 44.99, 41.24, 43.97, 41.12, 37.88, 41.53, 41.56,
39.18, 40.83, 42.96, 41.92, 43.86, 42.48, 42.65, 43.3, 41.99,
42.51, 40.65, 42.77, 34.71, 40.97, 38.15, 39.76, 36.74, 37.95,
39.17, 38.22, 39.31, 43.57, 37.21, 39.35, 42.37, 42.01, 42.39,
43.21, 36.91, 36.69, 41.07, 41.91, 34.63, 40.61, 36.23, 38.12,
40.76, 39.14, 41.81, 39.14, 41.04, 37.32, 40.83, 40.81, 38.29,
39.61, 40.96, 40.71, 40.47, 38.64, 39.76, 38.19, 39.05, 38.04,
41.14, 38.35, 42.3, 34.44, 40.93, 39.3, 41.44, 38.3, 42.74, 36.66,
40.02, 36.62, 40.48, 41.72, 41.23, 41.81, 42.07, 40.22, 37.83,
36.54, 37.77, 40.49, 38.65, 43.2, 43.32, 40.67, 41.95, 36.11,
39.28, 42.38, 40.35, 40.3, 43.48, 40.55, 40.54, 44.03, 41.94,
37.97, 41.98, 41.53, 38.19, 38.66, 41.18, 41.95, 42.53, 38.7,
44.55, 42.39, 41.55, 38.46, 42.27, 42.19, 41.95, 41.81, 39.81,
38.12, 42.94, 42.99, 38.85, 41.26, 43.13, 44.21, 38.54, 44.02,
43.46, 41.64, 42.06, 42.11, 42.34, 41.86, 37.91, 40.89, 40.5,
39.54, 37.87, 40.86, 41.36, 41.77, 42.03, 39.15, 40.04, 44.11,
41.34, 42.97, 38.42, 37.28, 41.04, 41.48, 38.82, 41.94, 37.95,
40.9, 40.39, 40.31, 43.19, 41.22, 41.49, 41.25, 40.07, 36.7,
39.97, 39.99, 41.7, 37.09, 42.58, 43.01, 37.7, 41.81, 39.99,
42.95, 43.19, 42.69, 41.5, 40.64, 43.24, 41.14, 41.21, 41.29,
41.43, 44.21, 38.52, 42.54, 40.54, 42.49, 43.2, 38.12, 40.08,
39.02, 41.45, 42.33, 41.11, 38.93, 41.63, 44.22, 41.41, 39.08,
40.9, 41.1, 43.88, 40.96, 46.75, 47.54, 40.35, 41.97, 44.94,
44.91, 44.66, 44.5, 44.4, 46.4, 47.97, 46.05, 45.57, 42.83, 41.48,
47.48, 45.43, 41.98, 43.14, 45.6, 44.78, 45.45, 45.69, 44.82,
44.24, 41.14, 43.14, 46.61, 43.92, 43.56, 43.68, 45.37, 45.15,
40.76, 43.78, 44.67, 41.36, 41.4, 40.97, 41.87, 39.83, 43.8,
48.36, 44.28, 43.29, 44.69, 43.26, 43.35, 44.34, 45.08, 42.26,
39.7, 42.4, 44.03, 43.22, 42.71, 45.89, 44.89, 44.81, 42.59,
40.85, 43.82, 44.85, 47.47, 43.64, 42.65, 45.67, 43.24, 42.33,
40.61, 38.3, 39.84, 41.08, 42.33, 44.44, 40.85, 39.58, 42.55,
41.75, 39.44, 41.79, 39.31, 41.34, 42.76, 40.79, 37.31, 42.85,
42.88, 42.01, 44.63, 38.85, 41.13, 40.43, 41.34, 43.14, 40.58,
42.21, 38.94, 44.88, 42.33, 42.61, 41.88, 41.13, 41.83, 42.8)), .Names = c("field",
"set", "ent_num", "rep_num", "lp"), class = "data.frame", row.names = c(NA,
-787L))

# session info

R version 3.4.1 (2017-06-30)

Platform: i386-w64-mingw32/i386 (32-bit)

Running under: Windows 7 x64 (build 7601) Service Pack 1



Matrix products: default



locale:

[1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C

[5] LC_TIME=English_United States.1252



attached base packages:

[1] stats     graphics  grDevices utils     datasets  methods   base



other attached packages:

[1] bindrcpp_0.2 tidyr_0.6.3  dplyr_0.7.4



loaded via a namespace (and not attached):

 [1] compiler_3.4.1   magrittr_1.5     assertthat_0.2.0 R6_2.2.2         tools_3.4.1

 [6] glue_1.1.1       tibble_1.3.3     Rcpp_0.12.11     stringi_1.1.5    pkgconfig_2.0.1

[11] rlang_0.1.2      bindr_0.1

This email and any attachments were sent from a Monsanto email account and may contain confidential and/or privileged information. If you are not the intended recipient, please contact the sender and delete this email and any attachments immediately. Any unauthorized use, including disclosing, printing, storing, copying or distributing this email, is prohibited. All emails and attachments sent to or from Monsanto email accounts may be subject to monitoring, reading, and archiving by Monsanto, including its affiliates and subsidiaries, as permitted by applicable law. Thank you.

        [[alternative HTML version deleted]]

______________________________________________
R-help at r-project.org<mailto:R-help at r-project.org> mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.






This email and any attachments were sent from a Monsanto email account and may contain confidential and/or privileged information. If you are not the intended recipient, please contact the sender and delete this email and any attachments immediately. Any unauthorized use, including disclosing, printing, storing, copying or distributing this email, is prohibited. All emails and attachments sent to or from Monsanto email accounts may be subject to monitoring, reading, and archiving by Monsanto, including its affiliates and subsidiaries, as permitted by applicable law. Thank you.





This email and any attachments were sent from a Monsanto email account and may contain confidential and/or privileged information. If you are not the intended recipient, please contact the sender and delete this email and any attachments immediately. Any unauthorized use, including disclosing, printing, storing, copying or distributing this email, is prohibited. All emails and attachments sent to or from Monsanto email accounts may be subject to monitoring, reading, and archiving by Monsanto, including its affiliates and subsidiaries, as permitted by applicable law. Thank you.

	[[alternative HTML version deleted]]



More information about the R-help mailing list