[R] Multiple Histograms in R
Jim Lemon
drjimlemon at gmail.com
Thu Apr 20 07:02:29 CEST 2017
Hi Prateek,
There is some difficulty with including the empty categories in the
factors generated. I couldn't get these even with drop=FALSE, so I had
to go through the "xtab" function. You can do it with the "table"
function in the base package, but it is a little more trouble. See if
this is what you want>
ppdat<-read.table(text="mou_mean,totalmrc_mean,rev_range,mou_range,Churn
23,24,25,27,1
45,46,47,49,1
43,44,45,47,1
45,46,47,49,0
56,57,58,60,0
67,68,69,71,1
67,68,69,71,0
44,45,46,48,1
33,34,35,37,0
90,91,92,94,1
87,88,89,91,1
76,77,78,80,1
33,34,35,37,1
44,45,46,48,1",
sep=",",header=TRUE)
ppdat$mou_mean_cut<-cut(ppdat$mou_mean,breaks=seq(23,103,10),include.lowest=TRUE)
ppdat$totalmrc_mean_cut<-cut(ppdat$totalmrc_mean,breaks=seq(23,103,10))
ppdat$rev_range_cut<-cut(ppdat$rev_range,breaks=seq(23,103,10))
ppdat$mou_range_cut<-cut(ppdat$mou_range,breaks=seq(23,103,10))
library(prettyR)
ppx<-xtab(Churn~mou_mean_cut,ppdat)
mou_mean_agg<-100*ppx$counts[2,]/colSums(ppx$counts)
mou_mean_agg[is.nan(mou_mean_agg)]<-0
ppx<-xtab(Churn~totalmrc_mean_cut,ppdat)
totalmrc_mean_agg<-100*ppx$counts[2,]/colSums(ppx$counts)
totalmrc_mean_agg[is.nan(totalmrc_mean_agg)]<-0
ppx<-xtab(Churn~rev_range_cut,ppdat)
rev_range_agg<-100*ppx$counts[2,]/colSums(ppx$counts)
rev_range_agg[is.nan(rev_range_agg)]<-0
ppx<-xtab(Churn~mou_range_cut,ppdat)
mou_range_agg<-100*ppx$counts[2,]/colSums(ppx$counts)
mou_range_agg[is.nan(mou_range_agg)]<-0
ppmat<-matrix(c(mou_mean_agg,totalmrc_mean_agg,rev_range_agg,
mou_range_agg),nrow=4,byrow=TRUE)
library(plotrix)
barp(ppmat,col=rainbow(4),main="Multiple histogram",ylim=c(0,105),
names.arg=levels(ppdat$mou_mean_cut),ylab="Percent churn")
legend(2.5,107,c("mou_mean","totalmrc_mean","rev_range","mou_range"),
fill=rainbow(4))
Jim
On Wed, Apr 19, 2017 at 11:05 PM, prateek pande <prtkpande at gmail.com> wrote:
> Hi,
>
> I have a data as mentioned below(at the bottom)
>
> Now out of that data i have to create multiple histograms in a single view
> in R. On that histogram i need on x -axis binned data with Breaks 10 and
> on y axis event rate . Here churn is dependent variable.
>
>
> *for example, for mou_mean , on x -axis on histogram i need Bins(mou_mean)
> and on y - axis in need Churn%age. *
> *Bins(mou_mean)*
>
> *Churn %age*
> 23-43 0.23%
> 33-53 0.5%
> 43-63 0.3%
> 53-73 0.4%
> 63-83 0.7%
> 83-103 0.8%
>
> Please help
>
>
> *mou_mean*
>
> *totalmrc_mean*
>
> *rev_range*
>
> *mou_range*
>
> *Churn*
>
> 23
>
> 24
>
> 25
>
> 27
>
> 1
>
> 45
>
> 46
>
> 47
>
> 49
>
> 1
>
> 43
>
> 44
>
> 45
>
> 47
>
> 1
>
> 45
>
> 46
>
> 47
>
> 49
>
> 0
>
> 56
>
> 57
>
> 58
>
> 60
>
> 0
>
> 67
>
> 68
>
> 69
>
> 71
>
> 1
>
> 67
>
> 68
>
> 69
>
> 71
>
> 0
>
> 44
>
> 45
>
> 46
>
> 48
>
> 1
>
> 33
>
> 34
>
> 35
>
> 37
>
> 0
>
> 90
>
> 91
>
> 92
>
> 94
>
> 1
>
> 87
>
> 88
>
> 89
>
> 91
>
> 1
>
> 76
>
> 77
>
> 78
>
> 80
>
> 1
>
> 33
>
> 34
>
> 35
>
> 37
>
> 1
>
> 44
>
> 45
>
> 46
>
> 48
>
> 1
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list