[R] glmer() -> corrected AUC optimism by bootstraping technic bootMer() [internal validation of a mixed-effects-model]
Andreu Ferrero Gmail
fromnorden at gmail.com
Thu Mar 24 14:34:45 CET 2016
>
>
> I would like to do an internal validation of a discriminative ability of a mixed effects models.
>
> Here is my scrip:
>
> ###########################
> ####bootMer-> boot AUC#####
> ###########################
>
> library(lme4)
> library(lattice)
> data(cbpp)
>
> #fit a model
>
> cbpp$Y<-cbpp$incidence>=1
> glmm<-glmer(Y~period + size + (1|herd), family=binomial, data=cbpp)
> glmm
>
> ##### funcio: versio 3 - no cal posar endpoint en la funcio
> ##########################################################
>
>
>
> AUCFun <- function(fit) {
> library(pROC)
> pred<-predict(fit, type="response")
> AUC<-as.numeric(auc(fit at resp$y, pred))
> }
>
>
> #test
>
> (AUCFun(glmm))
>
> ###run bootMer: AUCFun
>
>
>
> system.time(AUC.boot <- bootMer(glmm,nsim=100,FUN=AUCFun,seed=1982, use.u=TRUE,
> type="parametric", parallel="multicore", ncpus=2))
>
>
> #...
>
> (boot.ci(AUC.boot, index =c(1,1), type="norm"))
>
> roc(cbpp$Y, predict(glmm, type="response"))
>
>
> #Now it seems more reasonable, bias as "optimism"... but still do not know #if I am just doing a AUC with bootstrap CI
> **************************************************************************************************************************************
>
>
>
More information about the R-help
mailing list