[R] Conversion of Matlab code to an R code
Abhinaba Roy
abhinabaroy09 at gmail.com
Mon Mar 23 16:10:33 CET 2015
Hi,
Can a Matlab code be converted to R code?
I am finding it difficult to do so.
Could you please help me out with it.
Your help will be highly appreciated.
Here comes the Matlab code
##############
if ~isvector(ecg)
error('ecg must be a row or column vector');
end
if nargin < 3
gr = 1; % on default the function always plots
end
ecg = ecg(:); % vectorize
%% Initialize
qrs_c =[]; %amplitude of R
qrs_i =[]; %index
SIG_LEV = 0;
nois_c =[];
nois_i =[];
delay = 0;
skip = 0; % becomes one when a T wave is detected
not_nois = 0; % it is not noise when not_nois = 1
selected_RR =[]; % Selected RR intervals
m_selected_RR = 0;
mean_RR = 0;
qrs_i_raw =[];
qrs_amp_raw=[];
ser_back = 0;
test_m = 0;
SIGL_buf = [];
NOISL_buf = [];
THRS_buf = [];
SIGL_buf1 = [];
NOISL_buf1 = [];
THRS_buf1 = [];
%% Plot differently based on filtering settings
if gr
if fs == 200
figure, ax(1)=subplot(321);plot(ecg);axis tight;title('Raw ECG Signal');
else
figure, ax(1)=subplot(3,2,[1 2]);plot(ecg);axis tight;title('Raw ECG
Signal');
end
end
%% Noise cancelation(Filtering) % Filters (Filter in between 5-15 Hz)
if fs == 200
%% Low Pass Filter H(z) = ((1 - z^(-6))^2)/(1 - z^(-1))^2
b = [1 0 0 0 0 0 -2 0 0 0 0 0 1];
a = [1 -2 1];
h_l = filter(b,a,[1 zeros(1,12)]);
ecg_l = conv (ecg ,h_l);
ecg_l = ecg_l/ max( abs(ecg_l));
delay = 6; %based on the paper
if gr
ax(2)=subplot(322);plot(ecg_l);axis tight;title('Low pass filtered');
end
%% High Pass filter H(z) = (-1+32z^(-16)+z^(-32))/(1+z^(-1))
b = [-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1];
a = [1 -1];
h_h = filter(b,a,[1 zeros(1,32)]);
ecg_h = conv (ecg_l ,h_h);
ecg_h = ecg_h/ max( abs(ecg_h));
delay = delay + 16; % 16 samples for highpass filtering
if gr
ax(3)=subplot(323);plot(ecg_h);axis tight;title('High Pass Filtered');
end
else
%% bandpass filter for Noise cancelation of other sampling
frequencies(Filtering)
f1=5; %cuttoff low frequency to get rid of baseline wander
f2=15; %cuttoff frequency to discard high frequency noise
Wn=[f1 f2]*2/fs; % cutt off based on fs
N = 3; % order of 3 less processing
[a,b] = butter(N,Wn); %bandpass filtering
ecg_h = filtfilt(a,b,ecg);
ecg_h = ecg_h/ max( abs(ecg_h));
if gr
ax(3)=subplot(323);plot(ecg_h);axis tight;title('Band Pass Filtered');
end
end
%% derivative filter H(z) = (1/8T)(-z^(-2) - 2z^(-1) + 2z + z^(2))
h_d = [-1 -2 0 2 1]*(1/8);%1/8*fs
ecg_d = conv (ecg_h ,h_d);
ecg_d = ecg_d/max(ecg_d);
delay = delay + 2; % delay of derivative filter 2 samples
if gr
ax(4)=subplot(324);plot(ecg_d);axis tight;title('Filtered with the
derivative filter');
end
%% Squaring nonlinearly enhance the dominant peaks
ecg_s = ecg_d.^2;
if gr
ax(5)=subplot(325);plot(ecg_s);axis tight;title('Squared');
end
%% Moving average Y(nt) = (1/N)[x(nT-(N - 1)T)+ x(nT - (N - 2)T)+...+x(nT)]
ecg_m = conv(ecg_s ,ones(1 ,round(0.150*fs))/round(0.150*fs));
delay = delay + 15;
if gr
ax(6)=subplot(326);plot(ecg_m);axis tight;title('Averaged with 30 samples
length,Black noise,Green Adaptive Threshold,RED Sig Level,Red circles QRS
adaptive threshold');
axis tight;
end
%% Fiducial Mark
% Note : a minimum distance of 40 samples is considered between each R wave
% since in physiological point of view no RR wave can occur in less than
% 200 msec distance
[pks,locs] = findpeaks(ecg_m,'MINPEAKDISTANCE',round(0.2*fs));
%% initialize the training phase (2 seconds of the signal) to determine the
THR_SIG and THR_NOISE
THR_SIG = max(ecg_m(1:2*fs))*1/3; % 0.25 of the max amplitude
THR_NOISE = mean(ecg_m(1:2*fs))*1/2; % 0.5 of the mean signal is considered
to be noise
SIG_LEV= THR_SIG;
NOISE_LEV = THR_NOISE;
%% Initialize bandpath filter threshold(2 seconds of the bandpass signal)
THR_SIG1 = max(ecg_h(1:2*fs))*1/3; % 0.25 of the max amplitude
THR_NOISE1 = mean(ecg_h(1:2*fs))*1/2; %
SIG_LEV1 = THR_SIG1; % Signal level in Bandpassed filter
NOISE_LEV1 = THR_NOISE1; % Noise level in Bandpassed filter
%% Thresholding and online desicion rule
for i = 1 : length(pks)
%% locate the corresponding peak in the filtered signal
if locs(i)-round(0.150*fs)>= 1 && locs(i)<= length(ecg_h)
[y_i x_i] = max(ecg_h(locs(i)-round(0.150*fs):locs(i)));
else
if i == 1
[y_i x_i] = max(ecg_h(1:locs(i)));
ser_back = 1;
elseif locs(i)>= length(ecg_h)
[y_i x_i] = max(ecg_h(locs(i)-round(0.150*fs):end));
end
end
%% update the heart_rate (Two heart rate means one the moste recent and
the other selected)
if length(qrs_c) >= 9
diffRR = diff(qrs_i(end-8:end)); %calculate RR interval
mean_RR = mean(diffRR); % calculate the mean of 8 previous R waves
interval
comp =qrs_i(end)-qrs_i(end-1); %latest RR
if comp <= 0.92*mean_RR || comp >= 1.16*mean_RR
% lower down thresholds to detect better in MVI
THR_SIG = 0.5*(THR_SIG);
%THR_NOISE = 0.5*(THR_SIG);
% lower down thresholds to detect better in Bandpass
filtered
THR_SIG1 = 0.5*(THR_SIG1);
%THR_NOISE1 = 0.5*(THR_SIG1);
else
m_selected_RR = mean_RR; %the latest regular beats mean
end
end
%% calculate the mean of the last 8 R waves to make sure that QRS is
not
% missing(If no R detected , trigger a search back) 1.66*mean
if m_selected_RR
test_m = m_selected_RR; %if the regular RR availabe use it
elseif mean_RR && m_selected_RR == 0
test_m = mean_RR;
else
test_m = 0;
end
if test_m
if (locs(i) - qrs_i(end)) >= round(1.66*test_m)% it shows a QRS
is missed
[pks_temp,locs_temp] = max(ecg_m(qrs_i(end)+
round(0.200*fs):locs(i)-round(0.200*fs))); % search back and locate the max
in this interval
locs_temp = qrs_i(end)+ round(0.200*fs) + locs_temp -1;
%location
if pks_temp > THR_NOISE
qrs_c = [qrs_c pks_temp];
qrs_i = [qrs_i locs_temp];
% find the location in filtered sig
if locs_temp <= length(ecg_h)
[y_i_t x_i_t] =
max(ecg_h(locs_temp-round(0.150*fs):locs_temp));
else
[y_i_t x_i_t] = max(ecg_h(locs_temp-round(0.150*fs):end));
end
% take care of bandpass signal threshold
if y_i_t > THR_NOISE1
qrs_i_raw = [qrs_i_raw locs_temp-round(0.150*fs)+
(x_i_t - 1)];% save index of bandpass
qrs_amp_raw =[qrs_amp_raw y_i_t]; %save amplitude of
bandpass
SIG_LEV1 = 0.25*y_i_t + 0.75*SIG_LEV1; %when found
with the second thres
end
not_nois = 1;
SIG_LEV = 0.25*pks_temp + 0.75*SIG_LEV ; %when found with
the second threshold
end
else
not_nois = 0;
end
end
%% find noise and QRS peaks
if pks(i) >= THR_SIG
% if a QRS candidate occurs within 360ms of the previous
QRS
% ,the algorithm determines if its T wave or QRS
if length(qrs_c) >= 3
if (locs(i)-qrs_i(end)) <= round(0.3600*fs)
Slope1 =
mean(diff(ecg_m(locs(i)-round(0.075*fs):locs(i)))); %mean slope of the
waveform at that position
Slope2 =
mean(diff(ecg_m(qrs_i(end)-round(0.075*fs):qrs_i(end)))); %mean slope of
previous R wave
if abs(Slope1) <= abs(0.5*(Slope2)) % slope
less then 0.5 of previous R
nois_c = [nois_c pks(i)];
nois_i = [nois_i locs(i)];
skip = 1; % T wave identification
% adjust noise level in both filtered and
% MVI
NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1;
NOISE_LEV = 0.125*pks(i) +
0.875*NOISE_LEV;
else
skip = 0;
end
end
end
if skip == 0 % skip is 1 when a T wave is detected
qrs_c = [qrs_c pks(i)];
qrs_i = [qrs_i locs(i)];
% bandpass filter check threshold
if y_i >= THR_SIG1
if ser_back
qrs_i_raw = [qrs_i_raw x_i]; % save index of
bandpass
else
qrs_i_raw = [qrs_i_raw locs(i)-round(0.150*fs)+
(x_i - 1)];% save index of bandpass
end
qrs_amp_raw =[qrs_amp_raw y_i];% save amplitude
of bandpass
SIG_LEV1 = 0.125*y_i + 0.875*SIG_LEV1;% adjust threshold for
bandpass filtered sig
end
% adjust Signal level
SIG_LEV = 0.125*pks(i) + 0.875*SIG_LEV ;
end
elseif THR_NOISE <= pks(i) && pks(i)<THR_SIG
%adjust Noise level in filtered sig
NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1;
%adjust Noise level in MVI
NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;
elseif pks(i) < THR_NOISE
nois_c = [nois_c pks(i)];
nois_i = [nois_i locs(i)];
% noise level in filtered signal
NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1;
%end
%adjust Noise level in MVI
NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;
end
%% adjust the threshold with SNR
if NOISE_LEV ~= 0 || SIG_LEV ~= 0
THR_SIG = NOISE_LEV + 0.25*(abs(SIG_LEV - NOISE_LEV));
THR_NOISE = 0.5*(THR_SIG);
end
% adjust the threshold with SNR for bandpassed signal
if NOISE_LEV1 ~= 0 || SIG_LEV1 ~= 0
THR_SIG1 = NOISE_LEV1 + 0.25*(abs(SIG_LEV1 - NOISE_LEV1));
THR_NOISE1 = 0.5*(THR_SIG1);
end
% take a track of thresholds of smoothed signal
SIGL_buf = [SIGL_buf SIG_LEV];
NOISL_buf = [NOISL_buf NOISE_LEV];
THRS_buf = [THRS_buf THR_SIG];
% take a track of thresholds of filtered signal
SIGL_buf1 = [SIGL_buf1 SIG_LEV1];
NOISL_buf1 = [NOISL_buf1 NOISE_LEV1];
THRS_buf1 = [THRS_buf1 THR_SIG1];
skip = 0; %reset parameters
not_nois = 0; %reset parameters
ser_back = 0; %reset bandpass param
end
if gr
hold on,scatter(qrs_i,qrs_c,'m');
hold on,plot(locs,NOISL_buf,'--k','LineWidth',2);
hold on,plot(locs,SIGL_buf,'--r','LineWidth',2);
hold on,plot(locs,THRS_buf,'--g','LineWidth',2);
if ax(:)
linkaxes(ax,'x');
zoom on;
end
end
%% overlay on the signals
if gr
figure,az(1)=subplot(311);plot(ecg_h);title('QRS on Filtered Signal');axis
tight;
hold on,scatter(qrs_i_raw,qrs_amp_raw,'m');
hold on,plot(locs,NOISL_buf1,'LineWidth',2,'Linestyle','--','color','k');
hold on,plot(locs,SIGL_buf1,'LineWidth',2,'Linestyle','-.','color','r');
hold on,plot(locs,THRS_buf1,'LineWidth',2,'Linestyle','-.','color','g');
az(2)=subplot(312);plot(ecg_m);title('QRS on MVI signal and Noise
level(black),Signal Level (red) and Adaptive Threshold(green)');axis tight;
hold on,scatter(qrs_i,qrs_c,'m');
hold on,plot(locs,NOISL_buf,'LineWidth',2,'Linestyle','--','color','k');
hold on,plot(locs,SIGL_buf,'LineWidth',2,'Linestyle','-.','color','r');
hold on,plot(locs,THRS_buf,'LineWidth',2,'Linestyle','-.','color','g');
az(3)=subplot(313);plot(ecg-mean(ecg));title('Pulse train of the found QRS
on ECG signal');axis tight;
line(repmat(qrs_i_raw,[2 1]),repmat([min(ecg-mean(ecg))/2;
max(ecg-mean(ecg))/2],size(qrs_i_raw)),'LineWidth',2.5,'LineStyle','-.','Color','r');
linkaxes(az,'x');
zoom on;
end
##############
Regards
[[alternative HTML version deleted]]
More information about the R-help
mailing list